Learning low-degree functions from a logarithmic number of random
queries
- URL: http://arxiv.org/abs/2109.10162v1
- Date: Tue, 21 Sep 2021 13:19:04 GMT
- Title: Learning low-degree functions from a logarithmic number of random
queries
- Authors: Alexandros Eskenazis and Paata Ivanisvili
- Abstract summary: We prove that for any integer $ninmathbbN$, $din1,ldots,n$ and any $varepsilon,deltain(0,1)$, a bounded function $f:-1,1nto[-1,1]$ of degree at most $d$ can be learned.
- Score: 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We prove that for any integer $n\in\mathbb{N}$, $d\in\{1,\ldots,n\}$ and any
$\varepsilon,\delta\in(0,1)$, a bounded function $f:\{-1,1\}^n\to[-1,1]$ of
degree at most $d$ can be learned with probability at least $1-\delta$ and
$L_2$-error $\varepsilon$ using $\log(\tfrac{n}{\delta})\,\varepsilon^{-d-1}
C^{d^{3/2}\sqrt{\log d}}$ random queries for a universal finite constant $C>1$.
Related papers
- Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Sharp Noisy Binary Search with Monotonic Probabilities [5.563988395126509]
We revisit the noisy binary search model of Karp and Kleinberg.
We produce an algorithm that succeeds with probability $1-delta$ from [ frac1C_tau, varepsilon cdot left(lg n + O(log2/3 n log 1/3 frac1delta + log frac1delta) right.
arXiv Detail & Related papers (2023-11-01T20:45:13Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Online Learning of Smooth Functions [0.35534933448684125]
We study the online learning of real-valued functions where the hidden function is known to have certain smoothness properties.
We find new bounds for $textopt_p(mathcal F_q)$ that are sharp up to a constant factor.
In the multi-variable setup, we establish inequalities relating $textopt_p(mathcal F_q,d)$ to $textopt_p(mathcal F_q,d)$ and show that $textopt_p(mathcal F
arXiv Detail & Related papers (2023-01-04T04:05:58Z) - Low-degree learning and the metric entropy of polynomials [44.99833362998488]
We prove that any (deterministic or randomized) algorithm which learns $mathscrF_nd$ with $L$-accuracy $varepsilon$ requires at least $Omega(sqrtvarepsilon)2dlog n leq log mathsfM(mathscrF_n,d,|cdot|_L,varepsilon) satisfies the two-sided estimate $$c (1-varepsilon)2dlog
arXiv Detail & Related papers (2022-03-17T23:52:08Z) - Coresets for Data Discretization and Sine Wave Fitting [39.18104905459739]
A stream of integers in $[N]:=1,cdots,N$ is received from a sensor.
The goal is to approximate the $n$ points received so far in $P$ by a single frequency.
We prove that emphevery set $P$ of $n$ has a weighted subset $Ssubseteq P$.
arXiv Detail & Related papers (2022-03-06T17:07:56Z) - Sharper bounds for online learning of smooth functions of a single
variable [0.0]
We show that $opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$, where the constants in the bound do not depend on $q$.
We also show that $opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$, where the constants in the bound do not depend on $q$.
arXiv Detail & Related papers (2021-05-30T23:06:21Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.