PREM: Privately Answering Statistical Queries with Relative Error
- URL: http://arxiv.org/abs/2502.14809v1
- Date: Thu, 20 Feb 2025 18:32:02 GMT
- Title: PREM: Privately Answering Statistical Queries with Relative Error
- Authors: Badih Ghazi, Cristóbal Guzmán, Pritish Kamath, Alexander Knop, Ravi Kumar, Pasin Manurangsi, Sushant Sachdeva,
- Abstract summary: We introduce $mathsfPREM$ (Private Relative Error Multiplicative weight update), a new framework for generating synthetic data that a relative error guarantee for statistical queries under $(varepsilon, delta)$ differential privacy (DP)
We complement our algorithm with nearly matching lower bounds.
- Score: 91.98332694700046
- License:
- Abstract: We introduce $\mathsf{PREM}$ (Private Relative Error Multiplicative weight update), a new framework for generating synthetic data that achieves a relative error guarantee for statistical queries under $(\varepsilon, \delta)$ differential privacy (DP). Namely, for a domain ${\cal X}$, a family ${\cal F}$ of queries $f : {\cal X} \to \{0, 1\}$, and $\zeta > 0$, our framework yields a mechanism that on input dataset $D \in {\cal X}^n$ outputs a synthetic dataset $\widehat{D} \in {\cal X}^n$ such that all statistical queries in ${\cal F}$ on $D$, namely $\sum_{x \in D} f(x)$ for $f \in {\cal F}$, are within a $1 \pm \zeta$ multiplicative factor of the corresponding value on $\widehat{D}$ up to an additive error that is polynomial in $\log |{\cal F}|$, $\log |{\cal X}|$, $\log n$, $\log(1/\delta)$, $1/\varepsilon$, and $1/\zeta$. In contrast, any $(\varepsilon, \delta)$-DP mechanism is known to require worst-case additive error that is polynomial in at least one of $n, |{\cal F}|$, or $|{\cal X}|$. We complement our algorithm with nearly matching lower bounds.
Related papers
- $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
We consider the randomized communication complexity of the distributed $ell_p$-regression problem in the coordinator model.
For $p = 2$, i.e., least squares regression, we give the first optimal bound of $tildeTheta(sd2 + sd/epsilon)$ bits.
For $p in (1,2)$,we obtain an $tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound.
arXiv Detail & Related papers (2023-07-11T08:51:53Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Optimal SQ Lower Bounds for Learning Halfspaces with Massart Noise [9.378684220920562]
tightest statistical query (SQ) lower bounds for learnining halfspaces in the presence of Massart noise.
We show that for arbitrary $eta in [0,1/2]$ every SQ algorithm achieving misclassification error better than $eta$ requires queries of superpolynomial accuracy.
arXiv Detail & Related papers (2022-01-24T17:33:19Z) - Terminal Embeddings in Sublinear Time [14.959896180728832]
We show how to pre-process $T$ to obtain an almost linear-space data structure that supports computing the terminal embedding image of any $qinmathbbRd$ in sublinear time.
Our main contribution in this work is to give a new data structure for computing terminal embeddings.
arXiv Detail & Related papers (2021-10-17T00:50:52Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
We prove that for any integer $ninmathbbN$, $din1,ldots,n$ and any $varepsilon,deltain(0,1)$, a bounded function $f:-1,1nto[-1,1]$ of degree at most $d$ can be learned.
arXiv Detail & Related papers (2021-09-21T13:19:04Z) - Simplest non-additive measures of quantum resources [77.34726150561087]
We study measures that can be described by $cal E(rhootimes N) =E(e;N) ne Ne$.
arXiv Detail & Related papers (2021-06-23T20:27:04Z) - Sharper bounds for online learning of smooth functions of a single
variable [0.0]
We show that $opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$, where the constants in the bound do not depend on $q$.
We also show that $opt_1+epsilon(mathcalF_q) = Theta(epsilon-frac12)$, where the constants in the bound do not depend on $q$.
arXiv Detail & Related papers (2021-05-30T23:06:21Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
We study the problem of reconstructing a perfect matching $M*$ hidden in a randomly weighted $ntimes n$ bipartite graph.
We show that if $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ for an arbitrarily small constant $epsilon>0$, the reconstruction error for any estimator is shown to be bounded away from $0$.
arXiv Detail & Related papers (2021-03-17T00:59:33Z) - Learning and Testing Variable Partitions [13.575794982844222]
We show that $mathcalO(k n2)(delta + epsilon)$ can be learned in time $tildemathcalO(n2 mathrmpoly (1/epsilon)$ for any $epsilon > 0$.
We also show that even two-sided testers require $Omega(n)$ queries when $k = 2$.
arXiv Detail & Related papers (2020-03-29T10:12:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.