An Ultra-Fast Method for Simulation of Realistic Ultrasound Images
- URL: http://arxiv.org/abs/2109.10353v1
- Date: Tue, 21 Sep 2021 05:03:41 GMT
- Title: An Ultra-Fast Method for Simulation of Realistic Ultrasound Images
- Authors: Mostafa Sharifzadeh, Habib Benali, Hassan Rivaz
- Abstract summary: We introduce a novel ultra-fast ultrasound image simulation method based on the Fourier transform.
We demonstrate that data augmentation using the images generated by the proposed method substantially outperforms Field II in terms of Dice similarity coefficient.
- Score: 5.629161809575013
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Convolutional neural networks (CNNs) have attracted a rapidly growing
interest in a variety of different processing tasks in the medical ultrasound
community. However, the performance of CNNs is highly reliant on both the
amount and fidelity of the training data. Therefore, scarce data is almost
always a concern, particularly in the medical field, where clinical data is not
easily accessible. The utilization of synthetic data is a popular approach to
address this challenge. However, but simulating a large number of images using
packages such as Field II is time-consuming, and the distribution of simulated
images is far from that of the real images. Herein, we introduce a novel
ultra-fast ultrasound image simulation method based on the Fourier transform
and evaluate its performance in a lesion segmentation task. We demonstrate that
data augmentation using the images generated by the proposed method
substantially outperforms Field II in terms of Dice similarity coefficient,
while the simulation is almost 36000 times faster (both on CPU).
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions.
We present a novel simulation pipeline which uses segmentations from other modalities, an optimized data representation and GPU-accelerated Monte Carlo path tracing.
The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
arXiv Detail & Related papers (2024-02-09T15:14:48Z) - LOTUS: Learning to Optimize Task-based US representations [39.81131738128329]
Anatomical segmentation of organs in ultrasound images is essential to many clinical applications.
Existing deep neural networks require a large amount of labeled data for training in order to achieve clinically acceptable performance.
In this paper, we propose a novel approach for learning to optimize task-based ultra-sound image representations.
arXiv Detail & Related papers (2023-07-29T16:29:39Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Between Generating Noise and Generating Images: Noise in the Correct
Frequency Improves the Quality of Synthetic Histopathology Images for Digital
Pathology [0.0]
Synthetic images can augment existing datasets, to improve and validate AI algorithms.
We show that introducing random single-pixel noise with the appropriate spatial frequency into a semantic mask can dramatically improve the quality of the synthetic images.
Our work suggests a simple and powerful approach for generating synthetic data on demand to unbias limited datasets.
arXiv Detail & Related papers (2023-02-13T17:49:24Z) - Learning Ultrasound Rendering from Cross-Sectional Model Slices for
Simulated Training [13.640630434743837]
Computational simulations can facilitate the training of such skills in virtual reality.
We propose herein to bypass any rendering and simulation process at interactive time.
We use a generative adversarial framework with a dedicated generator architecture and input feeding scheme.
arXiv Detail & Related papers (2021-01-20T21:58:19Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNN-based methods for image deraining have achieved excellent performance in terms of reconstruction error as well as visual quality.
Due to challenges in obtaining real world fully-labeled image deraining datasets, existing methods are trained only on synthetically generated data.
We propose a Gaussian Process-based semi-supervised learning framework which enables the network in learning to derain using synthetic dataset.
arXiv Detail & Related papers (2020-06-10T00:33:18Z) - Breast lesion segmentation in ultrasound images with limited annotated
data [2.905751301655124]
We propose the use of simulated US images and natural images as auxiliary datasets in order to pre-train our segmentation network.
We show that fine-tuning the pre-trained network improves the dice score by 21% compared to training from scratch.
arXiv Detail & Related papers (2020-01-21T03:34:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.