Fast constrained sampling in pre-trained diffusion models
- URL: http://arxiv.org/abs/2410.18804v1
- Date: Thu, 24 Oct 2024 14:52:38 GMT
- Title: Fast constrained sampling in pre-trained diffusion models
- Authors: Alexandros Graikos, Nebojsa Jojic, Dimitris Samaras,
- Abstract summary: Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
- Score: 77.21486516041391
- License:
- Abstract: Diffusion models have dominated the field of large, generative image models, with the prime examples of Stable Diffusion and DALL-E 3 being widely adopted. These models have been trained to perform text-conditioned generation on vast numbers of image-caption pairs and as a byproduct, have acquired general knowledge about natural image statistics. However, when confronted with the task of constrained sampling, e.g. generating the right half of an image conditioned on the known left half, applying these models is a delicate and slow process, with previously proposed algorithms relying on expensive iterative operations that are usually orders of magnitude slower than text-based inference. This is counter-intuitive, as image-conditioned generation should rely less on the difficult-to-learn semantic knowledge that links captions and imagery, and should instead be achievable by lower-level correlations among image pixels. In practice, inverse models are trained or tuned separately for each inverse problem, e.g. by providing parts of images during training as an additional condition, to allow their application in realistic settings. However, we argue that this is not necessary and propose an algorithm for fast-constrained sampling in large pre-trained diffusion models (Stable Diffusion) that requires no expensive backpropagation operations through the model and produces results comparable even to the state-of-the-art \emph{tuned} models. Our method is based on a novel optimization perspective to sampling under constraints and employs a numerical approximation to the expensive gradients, previously computed using backpropagation, incurring significant speed-ups.
Related papers
- Towards Unsupervised Blind Face Restoration using Diffusion Prior [12.69610609088771]
Blind face restoration methods have shown remarkable performance when trained on large-scale synthetic datasets with supervised learning.
These datasets are often generated by simulating low-quality face images with a handcrafted image degradation pipeline.
In this paper, we address this issue by using only a set of input images, with unknown degradations and without ground truth targets, to fine-tune a restoration model.
Our best model also achieves the state-of-the-art results on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-06T20:38:14Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Accelerating Parallel Sampling of Diffusion Models [25.347710690711562]
We propose a novel approach that accelerates the sampling of diffusion models by parallelizing the autoregressive process.
Applying these techniques, we introduce ParaTAA, a universal and training-free parallel sampling algorithm.
Our experiments demonstrate that ParaTAA can decrease the inference steps required by common sequential sampling algorithms by a factor of 4$sim$14 times.
arXiv Detail & Related papers (2024-02-15T14:27:58Z) - CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster
Image Generation [49.3016007471979]
Large generative diffusion models have revolutionized text-to-image generation and offer immense potential for conditional generation tasks.
However, their widespread adoption is hindered by the high computational cost, which limits their real-time application.
We introduce a novel method dubbed CoDi, that adapts a pre-trained latent diffusion model to accept additional image conditioning inputs.
arXiv Detail & Related papers (2023-10-02T17:59:18Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.