Incorporating Data Uncertainty in Object Tracking Algorithms
- URL: http://arxiv.org/abs/2109.10521v1
- Date: Wed, 22 Sep 2021 05:30:46 GMT
- Title: Incorporating Data Uncertainty in Object Tracking Algorithms
- Authors: Anish Muthali, Forrest Laine, Claire Tomlin
- Abstract summary: Object tracking methods rely on measurement error models, typically in the form of measurement noise, false positive rates, and missed detection rates.
For detections generated from neural-network processed camera inputs, measurement error statistics are not sufficient to represent the primary source of errors.
We investigate incorporating data uncertainty into object tracking methods such as to improve the ability to track objects, and particularly those which out-of-distribution w.r.t. training data.
- Score: 2.3204178451683264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methodologies for incorporating the uncertainties characteristic of
data-driven object detectors into object tracking algorithms are explored.
Object tracking methods rely on measurement error models, typically in the form
of measurement noise, false positive rates, and missed detection rates. Each of
these quantities, in general, can be dependent on object or measurement
location. However, for detections generated from neural-network processed
camera inputs, these measurement error statistics are not sufficient to
represent the primary source of errors, namely a dissimilarity between run-time
sensor input and the training data upon which the detector was trained. To this
end, we investigate incorporating data uncertainty into object tracking methods
such as to improve the ability to track objects, and particularly those which
out-of-distribution w.r.t. training data. The proposed methodologies are
validated on an object tracking benchmark as well on experiments with a real
autonomous aircraft.
Related papers
- Road Obstacle Detection based on Unknown Objectness Scores [0.0]
Anomaly-detection techniques make it possible to identify pixels of unknown objects as out-of-distribution (OoD) samples.
The purpose of this study is to achieve stable performance for detecting unknown objects by incorporating the object-detection fashions into the pixel-wise anomaly detection methods.
arXiv Detail & Related papers (2024-03-27T02:35:36Z) - Deployment Prior Injection for Run-time Calibratable Object Detection [58.636806402337776]
We introduce an additional graph input to the detector, where the graph represents the deployment context prior.
During the test phase, any suitable deployment context prior can be injected into the detector via graph edits.
Even if the deployment prior is unknown, the detector can self-calibrate using deployment prior approximated using its own predictions.
arXiv Detail & Related papers (2024-02-27T04:56:04Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Object detection-based inspection of power line insulators: Incipient
fault detection in the low data-regime [0.0]
We formulate three object detection tasks for insulator and asset inspection from aerial images, focusing on incipient faults in disks.
We curate a large reference dataset of insulator images that can be used to learn robust features for detecting healthy and faulty insulators.
The results suggest that object detection models can be used to detect faults in insulators at a much incipient stage.
arXiv Detail & Related papers (2022-12-21T13:49:19Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Labels Are Not Perfect: Inferring Spatial Uncertainty in Object
Detection [26.008419879970365]
In this work, we infer the uncertainty in bounding box labels from LiDAR point clouds based on a generative model.
Comprehensive experiments show that the proposed model reflects complex environmental noises in LiDAR perception and the label quality.
We propose Jaccard IoU as a new evaluation metric that extends IoU by incorporating label uncertainty.
arXiv Detail & Related papers (2020-12-18T09:11:44Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Uncertainty-Aware Voxel based 3D Object Detection and Tracking with
von-Mises Loss [13.346392746224117]
Uncertainty helps us tackle the error in the perception system and improve robustness.
We propose a method for improving target tracking performance by adding uncertainty regression to the SECOND detector.
arXiv Detail & Related papers (2020-11-04T21:53:31Z) - Efficient and accurate object detection with simultaneous classification
and tracking [1.4620086904601473]
We propose a detection framework based on simultaneous classification and tracking in the point stream.
In this framework, a tracker performs data association in sequences of the point cloud, guiding the detector to avoid redundant processing.
Experiments were conducted on the benchmark dataset, and the results showed that the proposed method outperforms original tracking-by-detection approaches.
arXiv Detail & Related papers (2020-07-04T10:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.