Vehicle Behavior Prediction and Generalization Using Imbalanced Learning
Techniques
- URL: http://arxiv.org/abs/2109.10656v1
- Date: Wed, 22 Sep 2021 11:21:20 GMT
- Title: Vehicle Behavior Prediction and Generalization Using Imbalanced Learning
Techniques
- Authors: Theodor Westny, Erik Frisk, and Bj\"orn Olofsson
- Abstract summary: This paper proposes an interaction-aware prediction model consisting of an LSTM autoencoder and SVM classifier.
Evaluations show that the method enhances model performance, resulting in improved classification accuracy.
- Score: 1.3381749415517017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of learning-based methods for vehicle behavior prediction is a
promising research topic. However, many publicly available data sets suffer
from class distribution skews which limits learning performance if not
addressed. This paper proposes an interaction-aware prediction model consisting
of an LSTM autoencoder and SVM classifier. Additionally, an imbalanced learning
technique, the multiclass balancing ensemble is proposed. Evaluations show that
the method enhances model performance, resulting in improved classification
accuracy. Good generalization properties of learned models are important and
therefore a generalization study is done where models are evaluated on unseen
traffic data with dissimilar traffic behavior stemming from different road
configurations. This is realized by using two distinct highway traffic
recordings, the publicly available NGSIM US-101 and I80 data sets. Moreover,
methods for encoding structural and static features into the learning process
for improved generalization are evaluated. The resulting methods show
substantial improvements in classification as well as generalization
performance.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Mixed Semi-Supervised Generalized-Linear-Regression with applications to Deep-Learning and Interpolators [6.537685198688539]
We present a methodology for using unlabeled data to design semi supervised learning (SSL) methods.
We include in each of them a mixing parameter $alpha$, controlling the weight given to the unlabeled data.
We demonstrate the effectiveness of our methodology in delivering substantial improvement compared to the standard supervised models.
arXiv Detail & Related papers (2023-02-19T09:55:18Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
Most car-following models are generative and only consider the inputs of the speed, position, and acceleration of the last time step.
We implement a novel structure with two independent encoders and a self-attention decoder that could sequentially predict the following trajectories.
Numerical experiments with multiple settings on simulation and NGSIM datasets show that the IDM-Follower can improve the prediction performance.
arXiv Detail & Related papers (2022-10-20T02:24:27Z) - SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models [58.78043959556283]
We study the behaviors of models under different fine-tuning methodologies, including full fine-tuning and Low-Rank Adaptation (LoRA) fine-tuning methods.
Our analysis uncovers that LoRA fine-tuning consistently exhibits significantly better OOD generalization performance than full fine-tuning across various scenarios.
arXiv Detail & Related papers (2022-10-10T16:07:24Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - A Gating Model for Bias Calibration in Generalized Zero-shot Learning [18.32369721322249]
Generalized zero-shot learning (GZSL) aims at training a model that can generalize to unseen class data by only using auxiliary information.
One of the main challenges in GZSL is a biased model prediction toward seen classes caused by overfitting on only available seen class data during training.
We propose a two-stream autoencoder-based gating model for GZSL.
arXiv Detail & Related papers (2022-03-08T16:41:06Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.