Near-term Efficient Quantum Algorithms for Entanglement Analysis
- URL: http://arxiv.org/abs/2109.10785v3
- Date: Sun, 27 Aug 2023 13:34:00 GMT
- Title: Near-term Efficient Quantum Algorithms for Entanglement Analysis
- Authors: Ranyiliu Chen and Benchi Zhao and Xin Wang
- Abstract summary: Entanglement plays a crucial role in quantum physics and is the key resource in quantum information processing.
This work proposes three near-term efficient algorithms exploiting the hybrid quantum-classical technique to address this difficulty.
- Score: 5.453850739960517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement plays a crucial role in quantum physics and is the key resource
in quantum information processing. However, entanglement detection and
quantification are believed to be hard due to the operational impracticality of
existing methods. This work proposes three near-term efficient algorithms
exploiting the hybrid quantum-classical technique to address this difficulty.
The first algorithm finds the Schmidt decomposition--a powerful tool to analyze
the properties and structure of entanglement--for bipartite pure states. While
the logarithm negativity can be calculated from the Schmidt decomposition, we
propose the second algorithm to estimate the logarithm negativity for bipartite
pure states, where the width of the parameterized quantum circuits is further
reduced. Finally, we generalize our framework for mixed states, leading to our
third algorithm which detects entanglement on specific families of states, and
determines disdillability in general. All three algorithms share a similar
framework where the optimizations are accomplished by maximizing a cost
function utilizing local parameterized quantum circuits, with better hardware
efficiency and practicality compared to existing methods. The experimental
implementation on Quantum Leaf using the IoP CAS superconducting quantum
processor exhibits the validity and practicality of our methods for analyzing
and quantifying entanglement on near-term quantum devices.
Related papers
- Benchmarking Variational Quantum Algorithms for Combinatorial Optimization in Practice [0.0]
Variational quantum algorithms and, in particular, variants of the varational quantum eigensolver have been proposed to address optimization (CO) problems.
We numerically investigate what this scaling result means in practice for solving CO problems using Max-Cut as a benchmark.
arXiv Detail & Related papers (2024-08-06T09:57:34Z) - Enhancing Quantum Annealing in Digital-Analog Quantum Computing [0.0]
Digital-analog quantum computing (DAQC) offers a promising approach to addressing the challenges of building a practical quantum computer.
We propose an algorithm designed to enhance the performance of quantum annealing.
This study provides an example of how processing quantum data using a quantum circuit can outperform classical data processing, which discards quantum information.
arXiv Detail & Related papers (2023-06-03T09:16:15Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Limitations of variational quantum algorithms: a quantum optimal
transport approach [11.202435939275675]
We obtain extremely tight bounds for standard NISQ proposals in both the noisy and noiseless regimes.
The bounds limit the performance of both circuit model algorithms, such as QAOA, and also continuous-time algorithms, such as quantum annealing.
arXiv Detail & Related papers (2022-04-07T13:58:44Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum amplitude damping for solving homogeneous linear differential
equations: A noninterferometric algorithm [0.0]
This work proposes a novel approach by using the Quantum Amplitude Damping operation as a resource, in order to construct an efficient quantum algorithm for solving homogeneous LDEs.
We show that such an open quantum system-inspired circuitry allows for constructing the real exponential terms in the solution in a non-interferometric.
arXiv Detail & Related papers (2021-11-10T11:25:32Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.