Exploring Decomposition for Table-based Fact Verification
- URL: http://arxiv.org/abs/2109.11020v1
- Date: Wed, 22 Sep 2021 20:15:05 GMT
- Title: Exploring Decomposition for Table-based Fact Verification
- Authors: Xiaoyu Yang, Xiaodan Zhu
- Abstract summary: We improve fact verification by decomposing complex statements into simpler subproblems.
Our proposed approach achieves the new state-of-the-art performance, an 82.7% accuracy, on the TabFact benchmark.
- Score: 18.584226291619217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fact verification based on structured data is challenging as it requires
models to understand both natural language and symbolic operations performed
over tables. Although pre-trained language models have demonstrated a strong
capability in verifying simple statements, they struggle with complex
statements that involve multiple operations. In this paper, we improve fact
verification by decomposing complex statements into simpler subproblems.
Leveraging the programs synthesized by a weakly supervised semantic parser, we
propose a program-guided approach to constructing a pseudo dataset for
decomposition model training. The subproblems, together with their predicted
answers, serve as the intermediate evidence to enhance our fact verification
model. Experiments show that our proposed approach achieves the new
state-of-the-art performance, an 82.7\% accuracy, on the TabFact benchmark.
Related papers
- TabVer: Tabular Fact Verification with Natural Logic [11.002475880349452]
We propose a set-theoretic interpretation of numerals and arithmetic functions in the context of natural logic.
We leverage large language models to generate arithmetic expressions by generating questions about salient parts of a claim which are answered by executing functions on tables.
In a few-shot setting on FEVEROUS, we achieve an accuracy of 71.4, outperforming both fully neural and symbolic reasoning models by 3.4 points.
arXiv Detail & Related papers (2024-11-02T00:36:34Z) - Relation-based Counterfactual Data Augmentation and Contrastive Learning for Robustifying Natural Language Inference Models [0.0]
We propose a method in which we use token-based and sentence-based augmentation methods to generate counterfactual sentence pairs.
We show that the proposed method can improve the performance and robustness of the NLI model.
arXiv Detail & Related papers (2024-10-28T03:43:25Z) - LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
We propose Math-Minos, a natural language feedback-enhanced verifier.
Our experiments reveal that a small set of natural language feedback can significantly boost the performance of the verifier.
arXiv Detail & Related papers (2024-06-20T06:42:27Z) - Bridging Textual and Tabular Worlds for Fact Verification: A Lightweight, Attention-Based Model [34.1224836768324]
FEVEROUS is a benchmark and research initiative focused on fact extraction and verification tasks.
This paper introduces a simple yet powerful model that nullifies the need for modality conversion.
Our approach efficiently exploits latent connections between different data types, thereby yielding comprehensive and reliable verdict predictions.
arXiv Detail & Related papers (2024-03-26T03:54:25Z) - Towards preserving word order importance through Forced Invalidation [80.33036864442182]
We show that pre-trained language models are insensitive to word order.
We propose Forced Invalidation to help preserve the importance of word order.
Our experiments demonstrate that Forced Invalidation significantly improves the sensitivity of the models to word order.
arXiv Detail & Related papers (2023-04-11T13:42:10Z) - Optimization Techniques for Unsupervised Complex Table Reasoning via Self-Training Framework [5.351873055148804]
Self-training framework generates diverse synthetic data with complex logic.
We optimize the procedure using a "Table-Text Manipulator" to handle joint table-text reasoning scenarios.
UCTRST achieves above 90% of the supervised model performance on different tasks and domains.
arXiv Detail & Related papers (2022-12-20T09:15:03Z) - Grounded Graph Decoding Improves Compositional Generalization in
Question Answering [68.72605660152101]
Question answering models struggle to generalize to novel compositions of training patterns, such as longer sequences or more complex test structures.
We propose Grounded Graph Decoding, a method to improve compositional generalization of language representations by grounding structured predictions with an attention mechanism.
Our model significantly outperforms state-of-the-art baselines on the Compositional Freebase Questions (CFQ) dataset, a challenging benchmark for compositional generalization in question answering.
arXiv Detail & Related papers (2021-11-05T17:50:14Z) - Label-Descriptive Patterns and their Application to Characterizing
Classification Errors [31.272875287136426]
State-of-the-art deep learning methods achieve human-like performance on many tasks, but make errors nevertheless.
Characterizing these errors in easily interpretable terms gives insight into whether a model is prone to making systematic errors, but also gives a way to act and improve the model.
In this paper we propose a method that allows us to do so for arbitrary classifiers by mining a small set of patterns that together succinctly describe the input data that is partitioned according to correctness of prediction.
arXiv Detail & Related papers (2021-10-18T19:42:21Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
We propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks.
We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model.
arXiv Detail & Related papers (2020-10-10T14:03:20Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.