Optimization Techniques for Unsupervised Complex Table Reasoning via Self-Training Framework
- URL: http://arxiv.org/abs/2212.10097v2
- Date: Fri, 21 Jun 2024 03:06:36 GMT
- Title: Optimization Techniques for Unsupervised Complex Table Reasoning via Self-Training Framework
- Authors: Zhenyu Li, Xiuxing Li, Sunqi Fan, Jianyong Wang,
- Abstract summary: Self-training framework generates diverse synthetic data with complex logic.
We optimize the procedure using a "Table-Text Manipulator" to handle joint table-text reasoning scenarios.
UCTRST achieves above 90% of the supervised model performance on different tasks and domains.
- Score: 5.351873055148804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured tabular data is a fundamental data type in numerous fields, and the capacity to reason over tables is crucial for answering questions and validating hypotheses. However, constructing labeled data for complex reasoning tasks is labor intensive, and the quantity of annotated data remains insufficient to support the intricate demands of real-world applications. To address the insufficient annotation challenge, we present a self-training framework for unsupervised complex tabular reasoning (UCTR-ST) by generating diverse synthetic data with complex logic. Specifically, UCTR-ST incorporates several essential techniques: we aggregate diverse programs and execute them on tables based on a "Program-Management" component, and we bridge the gap between programs and text with a powerful "Program-Transformation" module that generates natural language sentences with complex logic. Furthermore, we optimize the procedure using a "Table-Text Manipulator" to handle joint table-text reasoning scenarios. The entire framework utilizes self-training techniques to leverage the unlabeled training data, which results in significant performance improvements when tested on real-world data. Experimental results demonstrate that UCTRST achieves above 90% of the supervised model performance on different tasks and domains, reducing the dependence on manual annotation. Additionally, our approach can serve as a data augmentation technique, significantly boosting the performance of supervised models in low-resourced domains.
Related papers
- TARGA: Targeted Synthetic Data Generation for Practical Reasoning over Structured Data [9.390415313514762]
TARGA is a framework that generates high-relevance synthetic data without manual annotation.
It substantially outperforms existing non-fine-tuned methods that utilize close-sourced model.
It exhibits superior sample efficiency, robustness, and generalization capabilities under non-I.I.D. settings.
arXiv Detail & Related papers (2024-12-27T09:16:39Z) - Reasoning-Aware Query-Focused Summarization over Multi-Table Data [1.325953054381901]
We propose QueryTableSummarizer++, an end-to-end generative framework leveraging large language models (LLMs)
Our method eliminates the need for intermediate serialization steps and directly generates query-relevant summaries.
Experiments on a benchmark dataset demonstrate that QueryTableSummarizer++ significantly outperforms state-of-the-art baselines in terms of BLEU, ROUGE, and F1-score.
arXiv Detail & Related papers (2024-12-12T06:04:31Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.
Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.
We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Tree-of-Table: Unleashing the Power of LLMs for Enhanced Large-Scale Table Understanding [42.841205217768106]
"Tree-of-Table" is a novel approach designed to enhance LLMs' reasoning capabilities over large and complex tables.
We show that Tree-of-Table sets a new benchmark with superior performance, showcasing remarkable efficiency and generalization capabilities in large-scale table reasoning.
arXiv Detail & Related papers (2024-11-13T11:02:04Z) - Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction [1.0968343822308813]
This paper proposes a novel approach that extracts triples straightforward from tabular data and integrates it with a retrieval-augmented generation (RAG) model to enhance the accuracy, coherence, and contextual richness of responses generated by a fine-tuned GPT-3.5-turbo-0125 model.
Our approach significantly outperforms existing baselines on the FeTaQA dataset, particularly excelling in Sacre-BLEU and ROUGE metrics.
arXiv Detail & Related papers (2024-09-21T16:46:15Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
Large Language Models (LLMs) often do not perform well on queries that require the aggregation of information across texts.
TACT contains challenging instructions that demand stitching information scattered across one or more texts.
We construct this dataset by leveraging an existing dataset of texts and their associated tables.
We demonstrate that all contemporary LLMs perform poorly on this dataset, achieving an accuracy below 38%.
arXiv Detail & Related papers (2024-06-05T20:32:56Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - Towards Table-to-Text Generation with Pretrained Language Model: A Table
Structure Understanding and Text Deliberating Approach [60.03002572791552]
We propose a table structure understanding and text deliberating approach, namely TASD.
Specifically, we devise a three-layered multi-head attention network to realize the table-structure-aware text generation model.
Our approach can generate faithful and fluent descriptive texts for different types of tables.
arXiv Detail & Related papers (2023-01-05T14:03:26Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.