Mid-IR spectroscopy with NIR grating spectrometers
- URL: http://arxiv.org/abs/2109.11269v1
- Date: Thu, 23 Sep 2021 10:12:31 GMT
- Title: Mid-IR spectroscopy with NIR grating spectrometers
- Authors: Paul Kaufmann (1), Helen M. Chrzanowski (1), Aron Vanselow (2), Sven
Ramelow (1 and 3) ((1) Humboldt-Universit\"at zu Berlin, Berlin, Germany, (2)
L'\'Ecole Normale Superieure, Paris, France, (3) IRIS Adlershof, Berlin,
Germany)
- Abstract summary: spectroscopy in the mid-IR using only a visible (VIS) solid-state laser and an off-the-shelf, commercial near-infrared (NIR) grating spectrometer.
With this proof-of-concept implementation, covering a broad range from 3.2$mu$m to 4.4$mu$m, we access short integration times down to 1s and signal-to-noise ratios above 200 at a spectral resolution from 12cm$-1$ down to 1.5cm$-1$ for longer integration times.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mid-infrared (mid-IR) spectroscopy is a crucial workhorse for a plethora of
analytical applications and is suitable for diverse materials, including gases,
polymers or biological tissue. However, this technologically significant
wavelength regime between 2.5-10$\mu$m suffers from technical limitations
primarily related to the large noise in mid-IR detectors and the complexity and
cost of bright, broadband mid-IR light sources. Here, using highly
non-degenerate, broadband photon pairs from bright spontaneous parametric
down-conversion (SPDC) in a nonlinear interferometer, we circumvent these
limitations and realise spectroscopy in the mid-IR using only a visible (VIS)
solid-state laser and an off-the-shelf, commercial near-infrared (NIR) grating
spectrometer. With this proof-of-concept implementation, covering a broad range
from 3.2$\mu$m to 4.4$\mu$m, we access short integration times down to 1s and
signal-to-noise ratios above 200 at a spectral resolution from 12cm$^{-1}$ down
to 1.5cm$^{-1}$ for longer integration times. Through the analysis of polymer
samples and the ambient CO$_2$ in our laboratory, we highlight the potential of
this measurement technique for real-world applications.
Related papers
- Open-Path Detection of Organic Vapors via Quantum Infrared Spectroscopy [0.0]
QFTIR spectroscopy emerged as an alternative to conventional spectroscopy in the mid-infrared region of the spectrum.
We present the first use of a QFTIR spectrometer for open-path detection of multiple interfering organic gases in ambient air.
arXiv Detail & Related papers (2024-05-21T14:26:51Z) - Fourier-transform infrared spectroscopy with undetected photons from
high-gain spontaneous parametric down-conversion [0.0]
We develop a high-parametric-gain SU (1,1) interferometer for MIR-range FTIR with undetected photons.
We demonstrate a high photon number at the interferometer output, a considerably lower photon number at the sample, and improved interference contrast.
Exploiting the broadband SU (1,1) interferometer, we measure and evaluate the MIR absorption spectra of polymers in the 3-mum region.
arXiv Detail & Related papers (2024-03-08T16:19:52Z) - Optimal baseline exploitation in vertical dark-matter detectors based on
atom interferometry [50.06952271801328]
Several terrestrial detectors for gravitational waves and dark matter based on long-baseline atom interferometry are currently in the final planning stages or already under construction.
We show that resonant-mode detectors based on multi-diamond fountain gradiometers achieve the optimal, shot-noise limited, sensitivity if their height constitutes 20% of the available baseline.
arXiv Detail & Related papers (2023-09-08T08:38:24Z) - Mid-infrared spectroscopy with a broadly tunable thin-film lithium
niobate optical parametric oscillator [45.82374977939355]
Device generates 25 mW of mid-infrared light at 3.2 microns, offering a power conversion efficiency of 15%.
We demonstrate the tuning and performance of the device by successfully measuring the spectra of methane and ammonia.
arXiv Detail & Related papers (2023-07-09T15:08:35Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Broadband quantum spectroscopy at the fingerprint mid-infrared region [0.5249805590164902]
We show that the mid-IR fingerprints of the sample can be revealed from measurements in the near-IR range using conventional silicon photodetectors.
As a proof-of-concept, we perform spectroscopy of nitrous oxide gas in the 7.4-8.4 mum wavelength range, with the detection in the 865-877 nm range.
arXiv Detail & Related papers (2022-02-03T12:53:41Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Frequency-domain optical coherence tomography with undetected
mid-infrared photons [0.0]
We implement mid-infrared frequency-domain OCT based on ultra-broadband entangled photon pairs.
We demonstrate 10 $mu$m axial and 20 $mu$m lateral resolution 2D and 3D imaging of strongly scattering ceramic and paint samples.
arXiv Detail & Related papers (2020-06-12T18:18:38Z) - Two-Dimensional Single- and Multiple-Quantum Correlation Spectroscopy in
Zero-Field Nuclear Magnetic Resonance [55.41644538483948]
We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero magnetic field using a Rb vapor-cell magnetometer.
At zero field the spectrum of ethanol appears as a mixture of carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra.
arXiv Detail & Related papers (2020-04-09T10:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.