論文の概要: Multi-resolution deep learning pipeline for dense large scale point
clouds
- arxiv url: http://arxiv.org/abs/2109.11311v1
- Date: Thu, 23 Sep 2021 11:50:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-24 15:12:30.019129
- Title: Multi-resolution deep learning pipeline for dense large scale point
clouds
- Title(参考訳): 高密度大規模点雲のためのマルチレゾリューション深層学習パイプライン
- Authors: Thomas Richard, Florent Dupont and Guillaume Lavoue
- Abstract要約: 大規模クラウドの完全精度を活用するために,新しい汎用ディープラーニングパイプラインを導入する。
パイプラインにより、各クラスは、サブサンプリングのノイズとメモリコストの削減、あるいはきめ細かい詳細から恩恵を受けることができる。
- 参考スコア(独自算出の注目度): 0.966840768820136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent development of 3D sensors allows the acquisition of extremely dense 3D
point clouds of large-scale scenes. The main challenge of processing such large
point clouds remains in the size of the data, which induce expensive
computational and memory cost. In this context, the full resolution cloud is
particularly hard to process, and details it brings are rarely exploited.
Although fine-grained details are important for detection of small objects,
they can alter the local geometry of large structural parts and mislead deep
learning networks. In this paper, we introduce a new generic deep learning
pipeline to exploit the full precision of large scale point clouds, but only
for objects that require details. The core idea of our approach is to split up
the process into multiple sub-networks which operate on different resolutions
and with each their specific classes to retrieve. Thus, the pipeline allows
each class to benefit either from noise and memory cost reduction of a
sub-sampling or from fine-grained details.
- Abstract(参考訳): 近年の3Dセンサの開発により,大規模シーンの高密度な3D点雲の取得が可能となった。
このような大きな点のクラウドを処理する主な課題は、高価な計算とメモリコストをもたらすデータのサイズである。
この文脈では、フル解像度のクラウドは特に処理が難しく、それがもたらす詳細はめったに利用されない。
細部の詳細は小さな物体の検出に重要であるが、大きな構造部品の局所形状や、誤解を招く深層学習ネットワークを変更することができる。
本稿では,大規模ポイントクラウドの精度を最大限に活用する新しい汎用的ディープラーニングパイプラインを提案する。
私たちのアプローチの核となる考え方は、プロセスを複数のサブネットワークに分割し、異なる解像度で動作し、それぞれのクラスを検索することです。
これにより、各クラスはサブサンプリングのノイズとメモリコストの削減、あるいはきめ細かい詳細の恩恵を受けることができる。
関連論文リスト
- PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis [28.54939134635978]
PointeNetは、ポイントクラウド分析に特化したネットワークである。
本手法は,分類/分割ヘッドとシームレスに統合したり,市販の3Dオブジェクト検出ネットワークに埋め込んだりすることで,柔軟性を示す。
ModelNet40、ScanObjectNN、ShapeNet KITTI、およびシーンレベルのデータセットKITTIを含むオブジェクトレベルのデータセットの実験は、ポイントクラウド分析における最先端メソッドよりもPointeNetの方が優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-12-20T03:34:48Z) - HEDNet: A Hierarchical Encoder-Decoder Network for 3D Object Detection
in Point Clouds [19.1921315424192]
ポイントクラウドにおける3Dオブジェクト検出は、自律運転システムにとって重要である。
3Dオブジェクト検出における主な課題は、3Dシーン内の点のスパース分布に起因する。
本稿では3次元オブジェクト検出のための階層型エンコーダデコーダネットワークであるHEDNetを提案する。
論文 参考訳(メタデータ) (2023-10-31T07:32:08Z) - Few-Shot 3D Point Cloud Semantic Segmentation via Stratified
Class-Specific Attention Based Transformer Network [22.9434434107516]
数ショットのクラウドセマンティックセマンティックセグメンテーションのための新しい多層トランスフォーマーネットワークを開発した。
提案手法は,既存の数ショットの3Dポイントクラウドセグメンテーションモデルよりも15%少ない推論時間で,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-28T00:27:54Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
MeshとPoint Cloudの単純化手法は、3Dモデルの複雑さを低減しつつ、視覚的品質と関連する健全な機能を維持することを目的としている。
そこで本研究では,正解点の標本化を学習し,高速点雲の簡易化手法を提案する。
提案手法は、入力空間から任意のユーザ定義の点数を選択し、視覚的知覚誤差を最小限に抑えるために、その位置を再配置するよう訓練されたグラフニューラルネットワークアーキテクチャに依存する。
論文 参考訳(メタデータ) (2021-09-30T10:23:55Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - Unravelling Small Sample Size Problems in the Deep Learning World [69.82853912238173]
筆者らはまず,アルゴリズムが動作空間に応じて分離される小さなサンプルサイズ問題に対するディープラーニングアルゴリズムのレビューを行う。
第2に,特徴マップの最も識別性の高い部分からグローバル情報を抽出することに焦点を当てた動的注意プーリング手法を提案する。
論文 参考訳(メタデータ) (2020-08-08T13:35:49Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
完全な3Dポイントクラウドを不完全なクラウドから推定することは、多くのビジョンやロボティクスアプリケーションにおいて重要な問題である。
本稿では,ポイントクラウド補完のための新しいGridding Residual Network(GRNet)を提案する。
実験結果から,提案したGRNetはShapeNet,Completion3D,KITTIベンチマークの最先端手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-06-06T02:46:39Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
本稿では,細かな物体形状を合成するための粗大な戦略とともに,カスケード型精細化ネットワークを提案する。
部分入力の局所的な詳細と大域的な形状情報を合わせて考えると、既存の詳細を不完全点集合に保存することができる。
また、各局所領域が同じパターンと基底的真理を持つことを保証し、複雑な点分布を学習するパッチ判別器を設計する。
論文 参考訳(メタデータ) (2020-04-07T13:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。