A loop Quantum Approximate Optimization Algorithm with Hamiltonian
updating
- URL: http://arxiv.org/abs/2109.11350v2
- Date: Fri, 24 Sep 2021 01:57:27 GMT
- Title: A loop Quantum Approximate Optimization Algorithm with Hamiltonian
updating
- Authors: Fang-Gang Duan and Dan-Bo Zhang
- Abstract summary: We propose a quantum approximate optimization algorithm(QAOA) with a very shallow circuit, called loop-QAOA, to avoid issues of noises at intermediate depths.
The insight of exploiting outputs from shallow circuits as bias may be applied for other quantum algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing noisy-resilience quantum algorithms is indispensable for practical
applications on Noisy Intermediate-Scale Quantum~(NISQ) devices. Here we
propose a quantum approximate optimization algorithm~(QAOA) with a very shallow
circuit, called loop-QAOA, to avoid issues of noises at intermediate depths,
while still can be able to exploit the power of quantum computing. The key
point is to use outputs of shallow-circuit QAOA as a bias to update the problem
Hamiltonian that encodes the solution as the ground state. By iterating a loop
between updating the problem Hamiltonian and optimizing the parameterized
quantum circuit, the loop-QAOA can gradually transform the problem Hamiltonian
to one easy for solving. We demonstrate the loop-QAOA on Max-Cut problems both
with and without noises. Compared with the conventional QAOA whose performance
will decrease due to noises, the performance of the loop-QAOA can still get
better with an increase in the number of loops. The insight of exploiting
outputs from shallow circuits as bias may be applied for other quantum
algorithms.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Trainability Analysis of Quantum Optimization Algorithms from a Bayesian
Lens [2.9356265132808024]
We show that a noiseless QAOA circuit with a depth of $tildemathtlog nright)$ can be trained efficiently.
Our results offer theoretical performance of quantum algorithms in the noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2023-10-10T02:56:28Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement
and measurement reduction [77.97248520278123]
We propose Shuffle-QUDIO to involve shuffle operations into local Hamiltonians during the quantum distributed optimization.
Compared with QUDIO, Shuffle-QUDIO significantly reduces the communication frequency among quantum processors and simultaneously achieves better trainability.
arXiv Detail & Related papers (2022-09-26T06:51:20Z) - Limitations of variational quantum algorithms: a quantum optimal
transport approach [11.202435939275675]
We obtain extremely tight bounds for standard NISQ proposals in both the noisy and noiseless regimes.
The bounds limit the performance of both circuit model algorithms, such as QAOA, and also continuous-time algorithms, such as quantum annealing.
arXiv Detail & Related papers (2022-04-07T13:58:44Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Shortcuts to Quantum Approximate Optimization Algorithm [2.150418646956503]
We propose a new ansatz dubbed as "Shortcuts to QAOA" (S-QAOA)
S-QAOA provides shortcuts to the ground state of target Hamiltonian by including more two-body interactions and releasing the parameter freedoms.
Considering the MaxCut problem and Sherrington-Kirkpatrick (SK) model, numerically shows the YY interaction has the best performance.
arXiv Detail & Related papers (2021-12-21T02:24:19Z) - Optimization and Noise Analysis of the Quantum Algorithm for Solving
One-Dimensional Poisson Equation [17.65730040410185]
We propose an efficient quantum algorithm for solving one-dimensional Poisson equation.
We further develop this algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices.
We analyze the effect of common noise existing in the real quantum devices on our algorithm using the IBM Qiskit toolkit.
arXiv Detail & Related papers (2021-08-27T09:44:41Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.