Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement
and measurement reduction
- URL: http://arxiv.org/abs/2209.12454v1
- Date: Mon, 26 Sep 2022 06:51:20 GMT
- Title: Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement
and measurement reduction
- Authors: Yang Qian, Yuxuan Du, Dacheng Tao
- Abstract summary: We propose Shuffle-QUDIO to involve shuffle operations into local Hamiltonians during the quantum distributed optimization.
Compared with QUDIO, Shuffle-QUDIO significantly reduces the communication frequency among quantum processors and simultaneously achieves better trainability.
- Score: 77.97248520278123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The variational quantum eigensolver (VQE) is a leading strategy that exploits
noisy intermediate-scale quantum (NISQ) machines to tackle chemical problems
outperforming classical approaches. To gain such computational advantages on
large-scale problems, a feasible solution is the QUantum DIstributed
Optimization (QUDIO) scheme, which partitions the original problem into $K$
subproblems and allocates them to $K$ quantum machines followed by the parallel
optimization. Despite the provable acceleration ratio, the efficiency of QUDIO
may heavily degrade by the synchronization operation. To conquer this issue,
here we propose Shuffle-QUDIO to involve shuffle operations into local
Hamiltonians during the quantum distributed optimization. Compared with QUDIO,
Shuffle-QUDIO significantly reduces the communication frequency among quantum
processors and simultaneously achieves better trainability. Particularly, we
prove that Shuffle-QUDIO enables a faster convergence rate over QUDIO.
Extensive numerical experiments are conducted to verify that Shuffle-QUDIO
allows both a wall-clock time speedup and low approximation error in the tasks
of estimating the ground state energy of molecule. We empirically demonstrate
that our proposal can be seamlessly integrated with other acceleration
techniques, such as operator grouping, to further improve the efficacy of VQE.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum subspace expansion in the presence of hardware noise [0.0]
Finding ground state energies on current quantum processing units (QPUs) continues to pose challenges.
Hardware noise severely affects both the expressivity and trainability of parametrized quantum circuits.
We show how to integrate VQE with a quantum subspace expansion, allowing for an optimal balance between quantum and classical computing capabilities and costs.
arXiv Detail & Related papers (2024-04-14T02:48:42Z) - Variational quantum algorithm-preserving feasible space for solving the
uncapacitated facility location problem [3.3682090109106446]
We propose the Variational Quantum Algorithm-Preserving Feasible Space (VQA-PFS) ansatz.
This ansatz applies mixed operators on constrained variables while employing Hardware-Efficient Ansatz (HEA) on unconstrained variables.
The numerical results demonstrate that VQA-PFS significantly enhances the success probability and exhibits faster convergence.
arXiv Detail & Related papers (2023-12-12T01:36:49Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
We define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs.
Our RTQEM routine can enhance VQCs' trainability by reducing the corruption of the loss function.
arXiv Detail & Related papers (2023-11-09T19:00:01Z) - Post-processing variationally scheduled quantum algorithm for constrained combinatorial optimization problems [6.407238428292173]
We propose a post-processing variationally scheduled quantum algorithm (pVSQA) for solving constrained optimization problems (COPs)
pVSQA combines the variational methods and the post-processing technique.
We implement pVSQA on a quantum annealer and a gate-type quantum device.
arXiv Detail & Related papers (2023-09-15T03:09:16Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
arXiv Detail & Related papers (2020-04-06T21:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.