論文の概要: Document Automation Architectures and Technologies: A Survey
- arxiv url: http://arxiv.org/abs/2109.11603v1
- Date: Thu, 23 Sep 2021 19:12:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-27 14:23:55.059731
- Title: Document Automation Architectures and Technologies: A Survey
- Title(参考訳): 文書自動化アーキテクチャと技術:調査
- Authors: Mohammad Ahmadi Achachlouei, Omkar Patil, Tarun Joshi, Vijayan N. Nair
- Abstract要約: 本稿では,文書自動化(DA)における技術の現状について調査する。
DAの目的は、異なるソースからの入力を自動的に統合し、定義されたテンプレートに従って文書を組み立てることにより、文書作成時の手作業を削減することである。
DAの商業的ソリューションのレビューは、特に法律分野において行われてきたが、これまでDAアーキテクチャと技術に関する学術研究の包括的なレビューは行われていない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper surveys the current state of the art in document automation (DA).
The objective of DA is to reduce the manual effort during the generation of
documents by automatically integrating input from different sources and
assembling documents conforming to defined templates. There have been reviews
of commercial solutions of DA, particularly in the legal domain, but to date
there has been no comprehensive review of the academic research on DA
architectures and technologies. The current survey of DA reviews the academic
literature and provides a clearer definition and characterization of DA and its
features, identifies state-of-the-art DA architectures and technologies in
academic research, and provides ideas that can lead to new research
opportunities within the DA field in light of recent advances in artificial
intelligence and deep neural networks.
- Abstract(参考訳): 本稿では,文書自動化技術(da)の現状について概説する。
DAの目的は、異なるソースからの入力を自動的に統合し、定義されたテンプレートに従って文書を組み立てることにより、文書作成時の手作業を削減することである。
DAの商業的ソリューションのレビューは、特に法律分野において行われているが、これまでDAアーキテクチャと技術に関する学術研究の包括的なレビューは行われていない。
DAの現在の調査は学術文献をレビューし、DAとその特徴を明確に定義し、学術研究における最先端のDAアーキテクチャと技術を特定し、人工知能とディープニューラルネットワークの最近の進歩を踏まえて、DA分野における新たな研究機会につながるアイデアを提供する。
関連論文リスト
- Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Document Automation Architectures: Updated Survey in Light of Large
Language Models [2.990411348977783]
本稿では,文書自動化(DA)における技術の現状について調査する。
DAの目的は、異なるソースからの入力を自動生成して統合し、定義されたテンプレートに準拠した文書を組み立てることにより、文書作成時の手作業を削減することである。
DAの商業的ソリューションのレビューは、特に法律分野において行われてきたが、これまでDAアーキテクチャと技術に関する学術研究の包括的なレビューは行われていない。
論文 参考訳(メタデータ) (2023-08-18T06:59:55Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
ソースフリードメイン適応(SFDA)の研究は近年注目を集めている。
SFDAの最近の進歩を包括的に調査し、それらを統一的な分類体系に整理する。
一般的な3つの分類基準で30以上のSFDA法を比較検討した。
論文 参考訳(メタデータ) (2023-02-23T06:32:09Z) - Deep learning for table detection and structure recognition: A survey [49.09628624903334]
本調査の目的は,テーブル検出の分野での大きな進展を深く理解することである。
この分野における古典的アプリケーションと新しいアプリケーションの両方について分析する。
既存のモデルのデータセットとソースコードは、読者にこの膨大な文献のコンパスを提供するために組織されている。
論文 参考訳(メタデータ) (2022-11-15T19:42:27Z) - Application of Artificial Intelligence and Machine Learning in
Libraries: A Systematic Review [0.0]
本研究の目的は,図書館における人工知能と機械学習の適用を探求する実証研究の合成を提供することである。
データはWeb of Science, Scopus, LISA, LISTAデータベースから収集された。
LIS領域に関連するAIとML研究の現在の状況は、主に理論的な研究に焦点が当てられていることを示している。
論文 参考訳(メタデータ) (2021-12-06T07:33:09Z) - Document AI: Benchmarks, Models and Applications [35.46858492311289]
ドキュメントAI(Document AI)とは、ビジネス文書を自動的に読み、理解し、分析する技術である。
近年、ディープラーニング技術の人気は、Document AIの開発を大きく進めている。
本稿では,代表モデル,タスク,ベンチマークデータセットについて概説する。
論文 参考訳(メタデータ) (2021-11-16T16:43:07Z) - Data-Driven Design-by-Analogy: State of the Art and Future Directions [11.025196033751786]
デザイン・バイ・アナロジー(Design-by- Analogy、DbA)は、ソース・ドメインから引き出されたインスピレーションに基づいて、ターゲット・ドメインに新しいソリューション、機会、あるいは設計が生成される設計手法である。
近年,DbA サポートのためのデータ駆動手法やツールを開発するための新たな機会として,設計データベースやデータサイエンス,人工知能技術が急速に進歩している。
論文 参考訳(メタデータ) (2021-06-03T04:35:34Z) - A Survey of Deep Learning Approaches for OCR and Document Understanding [68.65995739708525]
我々は、英語で書かれた文書の文書理解のための様々な手法をレビューする。
文献に現れる方法論を集約し,この領域を探索する研究者の跳躍点として機能させる。
論文 参考訳(メタデータ) (2020-11-27T03:05:59Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z) - A Systematic Literature Review on the Use of Deep Learning in Software
Engineering Research [22.21817722054742]
ソフトウェア開発タスクを自動化するために、ソフトウェア工学(SE)研究者が採用するテクニックのセットが、ディープラーニング(DL)の概念に根ざしている。
本稿では,SE & DLの交差点における研究の体系的な文献レビューを行う。
我々は、機械学習技術の特定の問題領域への適用を規定する一連の原則である学習の構成要素を中心に分析を行う。
論文 参考訳(メタデータ) (2020-09-14T15:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。