Entropy scaling law and the quantum marginal problem: simplification and
generalization
- URL: http://arxiv.org/abs/2109.11688v3
- Date: Thu, 7 Oct 2021 14:05:27 GMT
- Title: Entropy scaling law and the quantum marginal problem: simplification and
generalization
- Authors: Isaac H. Kim
- Abstract summary: We introduce a solution to the quantum marginal problem relevant to two-dimensional quantum many-body systems.
We show that this condition can be replaced by a weaker condition, namely the local consistency of the marginals.
This extends the applicability of the solution to any quantum many-body states in two dimensions that satisfy the entropy scaling law, with or without symmetry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, we introduced a solution to the quantum marginal problem relevant
to two-dimensional quantum many-body systems [I. H. Kim, Phys. Rev. X, 11,
021039]. One of the conditions was that the marginals are internally
translationally invariant. We show that this condition can be replaced by a
weaker condition, namely the local consistency of the marginals. This extends
the applicability of the solution to any quantum many-body states in two
dimensions that satisfy the entropy scaling law, with or without symmetry. We
also significantly simplify the proof by advocating the usage of the
maximum-entropy principle.
Related papers
- Continuity of entropies via integral representations [16.044444452278064]
We show that Frenkel's integral representation of the quantum relative entropy provides a natural framework to derive continuity bounds for quantum information measures.
We obtain a number of results: (1) a tight continuity relation for the conditional entropy in the case where the two states have equal marginals on the conditioning system, resolving a conjecture by Wilde in this special case; (2) a stronger version of the Fannes-Audenaert inequality on quantum entropy; and (3) better estimates on the quantum capacity of approximately degradable channels.
arXiv Detail & Related papers (2024-08-27T17:44:52Z) - Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - Convergence of Dynamics on Inductive Systems of Banach Spaces [68.8204255655161]
Examples are phase transitions in the thermodynamic limit, the emergence of classical mechanics from quantum theory at large action, and continuum quantum field theory arising from renormalization group fixed points.
We present a flexible modeling tool for the limit of theories: soft inductive limits constituting a generalization of inductive limits of Banach spaces.
arXiv Detail & Related papers (2023-06-28T09:52:20Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Entanglement Entropy of $(2+1)$D Quantum Critical Points with Quenched
Disorder: Dimensional Reduction Approach [0.0]
We compute the entanglement entropy of $(2+1)$-dimensional quantum critical points with randomness.
As a concrete example, we reveal novel entanglement signatures of $(2+1)$-dimensional Dirac fermion exposed to a random magnetic field.
arXiv Detail & Related papers (2022-01-13T15:55:14Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Quantumness Beyond Entanglement: The Case of Symmetric States [0.41998444721319206]
We certify the presence of quantumness via an average over all physically relevant modal decompositions.
We investigate extremal states for such a measure: SU(2)-coherent states possess the least quantumness whereas the opposite extreme is inhabited by states with maximally spread Majorana constellations.
arXiv Detail & Related papers (2021-10-21T18:00:00Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Entropy scaling law and the quantum marginal problem [0.0]
Quantum many-body states that frequently appear in physics often obey an entropy scaling law.
We prove a restricted version of this conjecture for translationally invariant systems in two spatial dimensions.
We derive a closed-form expression for the maximum entropy density compatible with those marginals.
arXiv Detail & Related papers (2020-10-14T22:30:37Z) - A complete hierarchy for the pure state marginal problem in quantum
mechanics [2.400716652658002]
We show that the existence of multiparticle absolutely maximally entangled states for a given dimension is equivalent to the separability of an explicitly given two-party quantum state.
We also show that the existence of quantum codes with given parameters can also be interpreted as a marginal problem.
arXiv Detail & Related papers (2020-08-05T13:27:54Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.