Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories
- URL: http://arxiv.org/abs/2408.02722v3
- Date: Fri, 11 Oct 2024 09:35:45 GMT
- Title: Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories
- Authors: Masahito Hayashi, Hayata Yamasaki,
- Abstract summary: A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
- Score: 47.02222405817297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The second law of thermodynamics is the cornerstone of physics, characterizing the convertibility between thermodynamic states through a single function, entropy. Given the universal applicability of thermodynamics, a fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function. In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing. Central to this formulation was the generalized quantum Stein's lemma, which aimed to characterize this optimal performance by a measure of quantum resources, the regularized relative entropy of resource. If proven valid, the generalized quantum Stein's lemma would lead to the second law for quantum resources, with the regularized relative entropy of resource taking the role of entropy in thermodynamics. However, in 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law. In this work, we address this problem by developing alternative techniques to successfully prove the generalized quantum Stein's lemma under a smaller set of assumptions than the original analysis. Based on our proof, we reestablish and extend the second law of quantum resource theories, applicable to both static resources of quantum states and a fundamental class of dynamical resources represented by classical-quantum (CQ) channels. These results resolve the fundamental problem of bridging the analogy between thermodynamics and quantum information theory.
Related papers
- A solution of the generalised quantum Stein's lemma [6.1642231492615345]
We prove that the Stein exponent associated with entanglement testing equals the regularised relative entropy of entanglement.
As a by-product, we prove that the same Stein exponent can also be achieved when the null hypothesis is only approximately i.i.d.
arXiv Detail & Related papers (2024-08-12T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Unification of the first law of quantum thermodynamics [0.0]
Underlying the classical thermodynamic principles are analogous microscopic laws, arising from the fundamental axioms of quantum mechanics.
The foremost quantum thermodynamic law is a simple statement concerning the conservation of energy.
There exist ambiguity and disagreement regarding the precise partition of a quantum system's energy change to work and heat.
arXiv Detail & Related papers (2022-08-22T19:36:41Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - The First Law of Quantum Field Thermodynamics [0.0]
We show that the most common definitions used in finite-dimensional quantum systems cannot be applied to quantum field theory (QFT)
We propose work distributions that are compatible with QFT and we show that they satisfy the first law of thermodynamics up to second moments.
arXiv Detail & Related papers (2020-08-20T18:16:26Z) - Second law of thermodynamics for relativistic fluids formulated with
relative entropy [0.0]
The second law of thermodynamics is discussed and reformulated from a quantum information theoretic perspective.
We discuss this first for generic quantum systems in contact with a thermal bath and then turn to a formulation suitable for the description of local dynamics.
A local version of the second law similar to the one used in relativistic fluid dynamics can be formulated with relative entropy or even relative entanglement entropy in a space-time region bounded by two light cones.
arXiv Detail & Related papers (2020-08-06T15:19:06Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.