Edge but not Least: Cross-View Graph Pooling
- URL: http://arxiv.org/abs/2109.11796v1
- Date: Fri, 24 Sep 2021 08:01:23 GMT
- Title: Edge but not Least: Cross-View Graph Pooling
- Authors: Xiaowei Zhou, Jie Yin, Ivor W. Tsang
- Abstract summary: This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
- Score: 76.71497833616024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks have emerged as a powerful model for graph
representation learning to undertake graph-level prediction tasks. Various
graph pooling methods have been developed to coarsen an input graph into a
succinct graph-level representation through aggregating node embeddings
obtained via graph convolution. However, most graph pooling methods are heavily
node-centric and are unable to fully leverage the crucial information contained
in global graph structure. This paper presents a cross-view graph pooling
(Co-Pooling) method to better exploit crucial graph structure information. The
proposed Co-Pooling fuses pooled representations learnt from both node view and
edge view. Through cross-view interaction, edge-view pooling and node-view
pooling seamlessly reinforce each other to learn more informative graph-level
representations. Co-Pooling has the advantage of handling various graphs with
different types of node attributes. Extensive experiments on a total of 15
graph benchmark datasets validate the effectiveness of our proposed method,
demonstrating its superior performance over state-of-the-art pooling methods on
both graph classification and graph regression tasks.
Related papers
- Careful Selection and Thoughtful Discarding: Graph Explicit Pooling
Utilizing Discarded Nodes [53.08068729187698]
We introduce a novel Graph Explicit Pooling (GrePool) method, which selects nodes by explicitly leveraging the relationships between the nodes and final representation vectors crucial for classification.
We conduct comprehensive experiments across 12 widely used datasets to validate our proposed method's effectiveness.
arXiv Detail & Related papers (2023-11-21T14:44:51Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Graph Pooling via Coarsened Graph Infomax [9.045707667111873]
We propose Coarsened GraphPool Infomaxing (CGI) to maximize the mutual information between the input and the coarsened graph of each pooling layer.
To achieve mutual information neural, we apply contrastive learning and propose a self-attention-based algorithm for learning positive and negative samples.
arXiv Detail & Related papers (2021-05-04T03:50:21Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Second-Order Pooling for Graph Neural Networks [62.13156203025818]
We propose to use second-order pooling as graph pooling, which naturally solves the above challenges.
We show that direct use of second-order pooling with graph neural networks leads to practical problems.
We propose two novel global graph pooling methods based on second-order pooling; namely, bilinear mapping and attentional second-order pooling.
arXiv Detail & Related papers (2020-07-20T20:52:36Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.