Second-Order Pooling for Graph Neural Networks
- URL: http://arxiv.org/abs/2007.10467v1
- Date: Mon, 20 Jul 2020 20:52:36 GMT
- Title: Second-Order Pooling for Graph Neural Networks
- Authors: Zhengyang Wang and Shuiwang Ji
- Abstract summary: We propose to use second-order pooling as graph pooling, which naturally solves the above challenges.
We show that direct use of second-order pooling with graph neural networks leads to practical problems.
We propose two novel global graph pooling methods based on second-order pooling; namely, bilinear mapping and attentional second-order pooling.
- Score: 62.13156203025818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks have achieved great success in learning node
representations for graph tasks such as node classification and link
prediction. Graph representation learning requires graph pooling to obtain
graph representations from node representations. It is challenging to develop
graph pooling methods due to the variable sizes and isomorphic structures of
graphs. In this work, we propose to use second-order pooling as graph pooling,
which naturally solves the above challenges. In addition, compared to existing
graph pooling methods, second-order pooling is able to use information from all
nodes and collect second-order statistics, making it more powerful. We show
that direct use of second-order pooling with graph neural networks leads to
practical problems. To overcome these problems, we propose two novel global
graph pooling methods based on second-order pooling; namely, bilinear mapping
and attentional second-order pooling. In addition, we extend attentional
second-order pooling to hierarchical graph pooling for more flexible use in
GNNs. We perform thorough experiments on graph classification tasks to
demonstrate the effectiveness and superiority of our proposed methods.
Experimental results show that our methods improve the performance
significantly and consistently.
Related papers
- Graph Parsing Networks [64.5041886737007]
We propose an efficient graph parsing algorithm to infer the pooling structure, which then drives graph pooling.
The resulting Graph Parsing Network (GPN) adaptively learns personalized pooling structure for each individual graph.
arXiv Detail & Related papers (2024-02-22T09:08:36Z) - Careful Selection and Thoughtful Discarding: Graph Explicit Pooling
Utilizing Discarded Nodes [53.08068729187698]
We introduce a novel Graph Explicit Pooling (GrePool) method, which selects nodes by explicitly leveraging the relationships between the nodes and final representation vectors crucial for classification.
We conduct comprehensive experiments across 12 widely used datasets to validate our proposed method's effectiveness.
arXiv Detail & Related papers (2023-11-21T14:44:51Z) - MPool: Motif-Based Graph Pooling [0.0]
Graph Neural networks (GNNs) have recently become a powerful technique for many graph-related tasks including graph classification.
We propose a multi-channel Motif-based Graph Pooling method named (MPool)
As the first channel, we develop node selection-based graph pooling by designing a node ranking model considering the motif adjacency of nodes.
As the second channel, we develop cluster-based graph pooling by designing a spectral clustering model using motif adjacency.
As the final layer, the result of each channel is aggregated into the final graph representation.
arXiv Detail & Related papers (2023-03-07T05:21:15Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.