SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction
- URL: http://arxiv.org/abs/2109.12093v1
- Date: Fri, 24 Sep 2021 17:37:35 GMT
- Title: SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction
- Authors: Yuxin Xiao, Zecheng Zhang, Yuning Mao, Carl Yang, Jiawei Han
- Abstract summary: We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
- Score: 51.27558374091491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stepping from sentence-level to document-level relation extraction, the
research community confronts increasing text length and more complicated entity
interactions. Consequently, it is more challenging to encode the key sources of
information--relevant contexts and entity types. However, existing methods only
implicitly learn to model these critical information sources while being
trained for relation extraction. As a result, they suffer the problems of
ineffective supervision and uninterpretable model predictions. In contrast, we
propose to explicitly teach the model to capture relevant contexts and entity
types by supervising and augmenting intermediate steps (SAIS) for relation
extraction. Based on a broad spectrum of carefully designed tasks, our proposed
SAIS method not only extracts relations of better quality due to more effective
supervision, but also retrieves the corresponding supporting evidence more
accurately so as to enhance interpretability. By assessing model uncertainty,
SAIS further boosts the performance via evidence-based data augmentation and
ensemble inference while reducing the computational cost. Eventually, SAIS
delivers state-of-the-art relation extraction results on three benchmarks
(DocRED, CDR, and GDA) and achieves 5.04% relative gains in F1 score compared
to the runner-up in evidence retrieval on DocRED.
Related papers
- GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
Document-level relation extraction (DocRE) aims to extract relations between entities from unstructured document text.
To overcome these challenges, we propose GEGA, a novel model for DocRE.
We evaluate the GEGA model on three widely used benchmark datasets: DocRED, Re-DocRED, and Revisit-DocRED.
arXiv Detail & Related papers (2024-07-31T07:15:33Z) - Entity or Relation Embeddings? An Analysis of Encoding Strategies for Relation Extraction [19.019881161010474]
Relation extraction is essentially a text classification problem, which can be tackled by fine-tuning a pre-trained language model (LM)
Existing approaches therefore solve the problem in an indirect way: they fine-tune an LM to learn embeddings of the head and tail entities, and then predict the relationship from these entity embeddings.
Our hypothesis in this paper is that relation extraction models can be improved by capturing relationships in a more direct way.
arXiv Detail & Related papers (2023-12-18T09:58:19Z) - PromptRE: Weakly-Supervised Document-Level Relation Extraction via
Prompting-Based Data Programming [30.597623178206874]
We propose PromptRE, a novel weakly-supervised document-level relation extraction method.
PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance.
Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.
arXiv Detail & Related papers (2023-10-13T17:23:17Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
This research proposes to retrieve textual and visual evidence based on the object, sentence, and whole image.
We develop a novel approach to synthesize the object-level, image-level, and sentence-level information for better reasoning between the same and different modalities.
arXiv Detail & Related papers (2023-05-25T15:26:13Z) - Improving Long Tailed Document-Level Relation Extraction via Easy
Relation Augmentation and Contrastive Learning [66.83982926437547]
We argue that mitigating the long-tailed distribution problem is crucial for DocRE in the real-world scenario.
Motivated by the long-tailed distribution problem, we propose an Easy Relation Augmentation(ERA) method for improving DocRE.
arXiv Detail & Related papers (2022-05-21T06:15:11Z) - HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised
Relation Extraction [60.80849503639896]
Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution.
We propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention.
Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.
arXiv Detail & Related papers (2022-05-04T17:56:48Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
This work focuses on extracting explanations that indicate that a relation exists while using only partially labeled data.
We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations.
We find that about 90% of the time, human annotators prefer D-REX's explanations over a strong BERT-based joint relation extraction and explanation model.
arXiv Detail & Related papers (2021-09-10T22:30:48Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.