PromptRE: Weakly-Supervised Document-Level Relation Extraction via
Prompting-Based Data Programming
- URL: http://arxiv.org/abs/2310.09265v1
- Date: Fri, 13 Oct 2023 17:23:17 GMT
- Title: PromptRE: Weakly-Supervised Document-Level Relation Extraction via
Prompting-Based Data Programming
- Authors: Chufan Gao, Xulin Fan, Jimeng Sun, Xuan Wang
- Abstract summary: We propose PromptRE, a novel weakly-supervised document-level relation extraction method.
PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance.
Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.
- Score: 30.597623178206874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation extraction aims to classify the relationships between two entities
into pre-defined categories. While previous research has mainly focused on
sentence-level relation extraction, recent studies have expanded the scope to
document-level relation extraction. Traditional relation extraction methods
heavily rely on human-annotated training data, which is time-consuming and
labor-intensive. To mitigate the need for manual annotation, recent
weakly-supervised approaches have been developed for sentence-level relation
extraction while limited work has been done on document-level relation
extraction. Weakly-supervised document-level relation extraction faces
significant challenges due to an imbalanced number "no relation" instances and
the failure of directly probing pretrained large language models for document
relation extraction. To address these challenges, we propose PromptRE, a novel
weakly-supervised document-level relation extraction method that combines
prompting-based techniques with data programming. Furthermore, PromptRE
incorporates the label distribution and entity types as prior knowledge to
improve the performance. By leveraging the strengths of both prompting and data
programming, PromptRE achieves improved performance in relation classification
and effectively handles the "no relation" problem. Experimental results on
ReDocRED, a benchmark dataset for document-level relation extraction,
demonstrate the superiority of PromptRE over baseline approaches.
Related papers
- Maximizing Relation Extraction Potential: A Data-Centric Study to Unveil Challenges and Opportunities [3.8087810875611896]
This paper investigates the possible data-centric characteristics that impede neural relation extraction.
It emphasizes pivotal issues, such as contextual ambiguity, correlating relations, long-tail data, and fine-grained relation distributions.
It sets a marker for future directions to alleviate these issues, thereby proving to be a critical resource for novice and advanced researchers.
arXiv Detail & Related papers (2024-09-07T23:40:47Z) - Semi-automatic Data Enhancement for Document-Level Relation Extraction
with Distant Supervision from Large Language Models [26.523153535336725]
Document-level Relation Extraction (DocRE) aims to extract relations from a long context.
We propose a method integrating a large language model (LLM) and a natural language inference (NLI) module to generate relation triples.
We demonstrate the effectiveness of our approach by introducing an enhanced dataset known as DocGNRE.
arXiv Detail & Related papers (2023-11-13T13:10:44Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
Event extraction aims to recognize pre-defined event triggers and arguments from texts.
Recent data augmentation methods often neglect the problem of grammatical incorrectness.
We propose a denoised structure-to-text augmentation framework for event extraction DAEE.
arXiv Detail & Related papers (2023-05-16T16:52:07Z) - Document-level Relation Extraction with Relation Correlations [15.997345900917058]
Document-level relation extraction faces two overlooked challenges: long-tail problem and multi-label problem.
We analyze the co-occurrence correlation of relations, and introduce it into DocRE task for the first time.
arXiv Detail & Related papers (2022-12-20T11:17:52Z) - Improving Long Tailed Document-Level Relation Extraction via Easy
Relation Augmentation and Contrastive Learning [66.83982926437547]
We argue that mitigating the long-tailed distribution problem is crucial for DocRE in the real-world scenario.
Motivated by the long-tailed distribution problem, we propose an Easy Relation Augmentation(ERA) method for improving DocRE.
arXiv Detail & Related papers (2022-05-21T06:15:11Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE)
Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage.
We propose to synthesize relation examples by prompting language models to generate structured texts.
arXiv Detail & Related papers (2022-03-17T05:55:14Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
This work focuses on extracting explanations that indicate that a relation exists while using only partially labeled data.
We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations.
We find that about 90% of the time, human annotators prefer D-REX's explanations over a strong BERT-based joint relation extraction and explanation model.
arXiv Detail & Related papers (2021-09-10T22:30:48Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
We propose a general approach to learn relation prototypes from unlabeled texts.
We learn relation prototypes as an implicit factor between entities.
We conduct experiments on two publicly available datasets: New York Times and Google Distant Supervision.
arXiv Detail & Related papers (2020-11-27T06:21:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.