ImplicitVol: Sensorless 3D Ultrasound Reconstruction with Deep Implicit
Representation
- URL: http://arxiv.org/abs/2109.12108v1
- Date: Fri, 24 Sep 2021 17:59:18 GMT
- Title: ImplicitVol: Sensorless 3D Ultrasound Reconstruction with Deep Implicit
Representation
- Authors: Pak-Hei Yeung, Linde Hesse, Moska Aliasi, Monique Haak, the
INTERGROWTH-21st Consortium, Weidi Xie, Ana I.L. Namburete
- Abstract summary: The objective of this work is to achieve sensorless reconstruction of a 3D volume from a set of 2D freehand ultrasound images with deep implicit representation.
In contrast to the conventional way that represents a 3D volume as a discrete voxel grid, we do so by parameterizing it as the zero level-set of a continuous function.
Our proposed model, as ImplicitVol, takes a set of 2D scans and their estimated locations in 3D as input, jointly re?fing the estimated 3D locations and learning a full reconstruction of the 3D volume.
- Score: 13.71137201718831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of this work is to achieve sensorless reconstruction of a 3D
volume from a set of 2D freehand ultrasound images with deep implicit
representation. In contrast to the conventional way that represents a 3D volume
as a discrete voxel grid, we do so by parameterizing it as the zero level-set
of a continuous function, i.e. implicitly representing the 3D volume as a
mapping from the spatial coordinates to the corresponding intensity values. Our
proposed model, termed as ImplicitVol, takes a set of 2D scans and their
estimated locations in 3D as input, jointly re?fing the estimated 3D locations
and learning a full reconstruction of the 3D volume. When testing on real 2D
ultrasound images, novel cross-sectional views that are sampled from
ImplicitVol show significantly better visual quality than those sampled from
existing reconstruction approaches, outperforming them by over 30% (NCC and
SSIM), between the output and ground-truth on the 3D volume testing data. The
code will be made publicly available.
Related papers
- Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
This paper investigates a 2D to 3D image translation method with a straightforward technique, enabling correlated 2D X-ray to 3D CT-like reconstruction.
We observe that existing approaches, which integrate information across multiple 2D views in the latent space lose valuable signal information during latent encoding. Instead, we simply repeat and the 2D views into higher-channel 3D volumes and approach the 3D reconstruction challenge as a straightforward 3D to 3D generative modeling problem.
This method enables the reconstructed 3D volume to retain valuable information from the 2D inputs, which are passed between channel states in a Swin U
arXiv Detail & Related papers (2024-06-26T15:18:20Z) - NeRF-MAE: Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields [57.617972778377215]
We show how to generate effective 3D representations from posed RGB images.
We pretrain this representation at scale on our proposed curated posed-RGB data, totaling over 1.8 million images.
Our novel self-supervised pretraining for NeRFs, NeRF-MAE, scales remarkably well and improves performance on various challenging 3D tasks.
arXiv Detail & Related papers (2024-04-01T17:59:55Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection [31.58403386994297]
We propose MonoNeRD, a novel detection framework that can infer dense 3D geometry and occupancy.
Specifically, we model scenes with Signed Distance Functions (SDF), facilitating the production of dense 3D representations.
To the best of our knowledge, this work is the first to introduce volume rendering for M3D, and demonstrates the potential of implicit reconstruction for image-based 3D perception.
arXiv Detail & Related papers (2023-08-18T09:39:52Z) - Neural Voting Field for Camera-Space 3D Hand Pose Estimation [106.34750803910714]
We present a unified framework for camera-space 3D hand pose estimation from a single RGB image based on 3D implicit representation.
We propose a novel unified 3D dense regression scheme to estimate camera-space 3D hand pose via dense 3D point-wise voting in camera frustum.
arXiv Detail & Related papers (2023-05-07T16:51:34Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape.
Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch.
arXiv Detail & Related papers (2022-08-14T16:37:51Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - Atlas: End-to-End 3D Scene Reconstruction from Posed Images [13.154808583020229]
We present an end-to-end 3D reconstruction method for a scene by directly regressing a truncated signed distance function (TSDF) from a set of posed RGB images.
A 2D CNN extracts features from each image independently which are then back-projected and accumulated into a voxel volume.
A 3D CNN refines the accumulated features and predicts the TSDF values.
arXiv Detail & Related papers (2020-03-23T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.