論文の概要: BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor
Segmentation
- arxiv url: http://arxiv.org/abs/2109.12271v1
- Date: Sat, 25 Sep 2021 04:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 16:01:57.795955
- Title: BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor
Segmentation
- Title(参考訳): BiTr-Unet:MRI脳腫瘍分離のためのCNN変換器複合ネットワーク
- Authors: Qiran Jia, Hai Shu
- Abstract要約: マルチモーダルMRIスキャンにおける脳腫瘍セグメント化のための,BiTr-Unetと呼ばれるCNN-Transformer複合モデルを提案する。
The proposed BiTr-Unet is a good performance on the BraTS 2021 validation dataset with mean Dice score 0.9076, 0.8392 and 0.8231, and mean Hausdorff distance 4.5322, 13.4592 and 14.9963 for the entire tumor, tumor core, and enhance tumor。
- 参考スコア(独自算出の注目度): 2.741266294612776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) have recently achieved remarkable
success in automatically identifying organs or lesions on 3D medical images.
Meanwhile, vision transformer networks have exhibited exceptional performance
in 2D image classification tasks. Compared with CNNs, transformer networks have
an obvious advantage of extracting long-range features due to their
self-attention algorithm. Therefore, in this paper we present a CNN-Transformer
combined model called BiTr-Unet for brain tumor segmentation on multi-modal MRI
scans. The proposed BiTr-Unet achieves good performance on the BraTS 2021
validation dataset with mean Dice score 0.9076, 0.8392 and 0.8231, and mean
Hausdorff distance 4.5322, 13.4592 and 14.9963 for the whole tumor, tumor core,
and enhancing tumor, respectively.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は3D画像の臓器や病変を自動的に識別することに成功した。
一方、視覚変換器ネットワークは2次元画像分類タスクにおいて例外的な性能を示した。
CNNと比較して、トランスフォーマーネットワークは、自己アテンションアルゴリズムによって長距離の特徴を抽出する利点がある。
そこで本稿では, マルチモーダルMRIにおける脳腫瘍セグメント化のためのBiTr-Unetと呼ばれるCNN-Transformer複合モデルを提案する。
提案するbitr-unetは, 腫瘍, 腫瘍コア, 造影腫瘍に対して, 平均ダイススコア0.9076, 0.8392, 0.8231, 平均ハウスドルフ距離4.5322, 13.4592, 14.9963のブラッツ2021バリデーションデータセットにおいて良好な性能を発揮する。
関連論文リスト
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - CAFCT-Net: A CNN-Transformer Hybrid Network with Contextual and Attentional Feature Fusion for Liver Tumor Segmentation [3.8952128960495638]
肝腫瘍分節化のためのコンテクスト・アテンショナル機能FusionsEnhanced Convolutional Network (CNN) と Transformer Hybrid Network (CAFCT-Net) を提案する。
実験の結果,提案モデルの平均断面積は76.54%,Dice係数は84.29%であった。
論文 参考訳(メタデータ) (2024-01-30T10:42:11Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors
in MRI Images [7.334185314342017]
我々はSwin UNEt TRansformers(Swin UNETR)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルは、シフトしたウィンドウを利用して、5つの異なる解像度で特徴を抽出し、自己注意を演算する。
我々は、BraTS 2021セグメンテーションチャレンジに参加し、提案したモデルは、検証フェーズにおける最も優れたアプローチの1つである。
論文 参考訳(メタデータ) (2022-01-04T18:01:34Z) - Feature-enhanced Generation and Multi-modality Fusion based Deep Neural
Network for Brain Tumor Segmentation with Missing MR Modalities [2.867517731896504]
主な問題は、すべてのMRIが常に臨床検査で利用できるわけではないことである。
今回我々は1つ以上のモダリティが欠落した場合に新しい脳腫瘍分節ネットワークを提案する。
提案ネットワークは,機能強化ジェネレータ,相関制約ブロック,セグメンテーションネットワークの3つのサブネットワークで構成されている。
論文 参考訳(メタデータ) (2021-11-08T10:59:40Z) - A Joint Graph and Image Convolution Network for Automatic Brain Tumor
Segmentation [1.3381749415517017]
本稿では,脳腫瘍(BraTS)2021の課題として,関節グラフ畳み込み・画像畳み込みニューラルネットワークを提案する。
我々は、まず、グラフニューラルネットワーク(GNN)によって分割された、異なる画像領域からなるグラフとして、各脳をモデル化する。
GNNによって同定される腫瘍体積は、最終セグメンテーションを生成する単純な(ボクセル)畳み込みニューラルネットワーク(CNN)によってさらに洗練される。
論文 参考訳(メタデータ) (2021-09-12T18:16:59Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation [17.756591105686]
本稿では,3次元重み付き畳み込み層を積み重ねることで,マルチスケール情報を取得するハイパーデンスインセプション3D UNet(HI-Net)を提案する。
BRATS 2020テストセットの予備結果は、提案されたアプローチにより、ET、WT、TCのダイス(DSC)スコアがそれぞれ0.79457、0.87494、0.83712であることを示しています。
論文 参考訳(メタデータ) (2020-12-12T09:09:04Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。