DziriBERT: a Pre-trained Language Model for the Algerian Dialect
- URL: http://arxiv.org/abs/2109.12346v1
- Date: Sat, 25 Sep 2021 11:51:35 GMT
- Title: DziriBERT: a Pre-trained Language Model for the Algerian Dialect
- Authors: Amine Abdaoui, Mohamed Berrimi, Mourad Oussalah, Abdelouahab Moussaoui
- Abstract summary: We study the Algerian dialect which has several specificities that make the use of Arabic or multilingual models inappropriate.
To address this issue, we collected more than one Million Algerian tweets, and pre-trained the first Algerian language model: DziriBERT.
- Score: 2.064612766965483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained transformers are now the de facto models in Natural Language
Processing given their state-of-the-art results in many tasks and languages.
However, most of the current models have been trained on languages for which
large text resources are already available (such as English, French, Arabic,
etc.). Therefore, there is still a number of low-resource languages that need
more attention from the community. In this paper, we study the Algerian dialect
which has several specificities that make the use of Arabic or multilingual
models inappropriate. To address this issue, we collected more than one Million
Algerian tweets, and pre-trained the first Algerian language model: DziriBERT.
When compared to existing models, DziriBERT achieves the best results on two
Algerian downstream datasets. The obtained results show that pre-training a
dedicated model on a small dataset (150 MB) can outperform existing models that
have been trained on much more data (hundreds of GB). Finally, our model is
publicly available to the community.
Related papers
- AlcLaM: Arabic Dialectal Language Model [2.8477895544986955]
We construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms.
We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch.
Named AlcLaM, our model was trained using only 13 GB of text, which represents a fraction of the data used by existing models.
arXiv Detail & Related papers (2024-07-18T02:13:50Z) - FinGPT: Large Generative Models for a Small Language [48.46240937758779]
We create large language models (LLMs) for Finnish, a language spoken by less than 0.1% of the world population.
We train seven monolingual models from scratch (186M to 13B parameters) dubbed FinGPT.
We continue the pretraining of the multilingual BLOOM model on a mix of its original training data and Finnish, resulting in a 176 billion parameter model we call BLUUMI.
arXiv Detail & Related papers (2023-11-03T08:05:04Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - TiBERT: Tibetan Pre-trained Language Model [2.9554549423413303]
This paper collects the large-scale training data from Tibetan websites and constructs a vocabulary that can cover 99.95$%$ of the words in the corpus by using Sentencepiece.
We apply TiBERT to the downstream tasks of text classification and question generation, and compare it with classic models and multilingual pre-trained models.
arXiv Detail & Related papers (2022-05-15T14:45:08Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
We focus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi.
We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank leads to performance close to those obtained with the same architecture pre-trained on large multilingual and monolingual models.
arXiv Detail & Related papers (2021-10-26T14:59:16Z) - PAGnol: An Extra-Large French Generative Model [53.40189314359048]
We introduce PAGnol, a collection of French GPT models.
Using scaling laws, we efficiently train PAGnol-XL with the same computational budget as CamemBERT.
arXiv Detail & Related papers (2021-10-16T11:44:23Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - WikiBERT models: deep transfer learning for many languages [1.3455090151301572]
We introduce a simple, fully automated pipeline for creating languagespecific BERT models from Wikipedia data.
We assess the merits of these models using the state-of-the-art UDify on Universal Dependencies data.
arXiv Detail & Related papers (2020-06-02T11:57:53Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
This paper proposes a monolingual BERT for the Persian language (ParsBERT)
It shows its state-of-the-art performance compared to other architectures and multilingual models.
ParsBERT obtains higher scores in all datasets, including existing ones as well as composed ones.
arXiv Detail & Related papers (2020-05-26T05:05:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.