AlcLaM: Arabic Dialectal Language Model
- URL: http://arxiv.org/abs/2407.13097v1
- Date: Thu, 18 Jul 2024 02:13:50 GMT
- Title: AlcLaM: Arabic Dialectal Language Model
- Authors: Murtadha Ahmed, Saghir Alfasly, Bo Wen, Jamaal Qasem, Mohammed Ahmed, Yunfeng Liu,
- Abstract summary: We construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms.
We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch.
Named AlcLaM, our model was trained using only 13 GB of text, which represents a fraction of the data used by existing models.
- Score: 2.8477895544986955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained Language Models (PLMs) are integral to many modern natural language processing (NLP) systems. Although multilingual models cover a wide range of languages, they often grapple with challenges like high inference costs and a lack of diverse non-English training data. Arabic-specific PLMs are trained predominantly on modern standard Arabic, which compromises their performance on regional dialects. To tackle this, we construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms. We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch. Named AlcLaM, our model was trained using only 13 GB of text, which represents a fraction of the data used by existing models such as CAMeL, MARBERT, and ArBERT, compared to 7.8%, 10.2%, and 21.3%, respectively. Remarkably, AlcLaM demonstrates superior performance on a variety of Arabic NLP tasks despite the limited training data. AlcLaM is available at GitHub https://github.com/amurtadha/Alclam and HuggingFace https://huggingface.co/rahbi.
Related papers
- ALLaM: Large Language Models for Arabic and English [9.881560166505452]
We present ALLaM: Arabic Large Language Model, a series of large language models to support the ecosystem of Arabic Language Technologies (ALT)
Our autoregressive decoder-only architecture models demonstrate how second-language acquisition via vocabulary expansion and pretraining can steer a model towards a new language (Arabic) without any catastrophic forgetting in the original language (English)
We show that extensive alignment with human preferences can significantly enhance the performance of a language model compared to models of a larger scale with lower quality alignment.
arXiv Detail & Related papers (2024-07-22T05:35:17Z) - Bilingual Adaptation of Monolingual Foundation Models [48.859227944759986]
We present an efficient method for adapting a monolingual Large Language Model (LLM) to another language.
Our two-stage approach begins with expanding the vocabulary and training only the embeddings matrix.
By continually pre-training on a mix of Arabic and English corpora, the model retains its proficiency in English while acquiring capabilities in Arabic.
arXiv Detail & Related papers (2024-07-13T21:09:38Z) - GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning [0.0]
We introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content.
We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality.
Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks.
arXiv Detail & Related papers (2024-07-02T10:43:49Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - On the importance of Data Scale in Pretraining Arabic Language Models [46.431706010614334]
We conduct a comprehensive study on the role of data in Arabic Pretrained Language Models (PLMs)
We reassess the performance of a suite of state-of-the-art Arabic PLMs by retraining them on massive-scale, high-quality Arabic corpora.
Our analysis strongly suggests that pretraining data by far is the primary contributor to performance, surpassing other factors.
arXiv Detail & Related papers (2024-01-15T15:11:15Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z) - Jais and Jais-chat: Arabic-Centric Foundation and Instruction-Tuned Open
Generative Large Language Models [57.76998376458017]
We introduce Jais and Jais-chat, new state-of-the-art Arabic-centric foundation and instruction-tuned open generative large language models (LLMs)
The models are based on the GPT-3 decoder-only architecture and are pretrained on a mixture of Arabic and English texts.
We provide a detailed description of the training, the tuning, the safety alignment, and the evaluation of the models.
arXiv Detail & Related papers (2023-08-30T17:07:17Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z) - Parameter and Data Efficient Continual Pre-training for Robustness to
Dialectal Variance in Arabic [9.004920233490642]
We show that multilingual-BERT (mBERT) incrementally pretrained on Arabic monolingual data takes less training time and yields comparable accuracy when compared to our custom monolingual Arabic model.
We then explore two continual pre-training methods-- (1) using small amounts of dialectical data for continual finetuning and (2) parallel Arabic to English data and a Translation Language Modeling loss function.
arXiv Detail & Related papers (2022-11-08T02:51:57Z) - Interpreting Arabic Transformer Models [18.98681439078424]
We probe how linguistic information is encoded in Arabic pretrained models, trained on different varieties of Arabic language.
We perform a layer and neuron analysis on the models using three intrinsic tasks: two morphological tagging tasks based on MSA (modern standard Arabic) and dialectal POS-tagging and a dialectal identification task.
arXiv Detail & Related papers (2022-01-19T06:32:25Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
We focus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi.
We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank leads to performance close to those obtained with the same architecture pre-trained on large multilingual and monolingual models.
arXiv Detail & Related papers (2021-10-26T14:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.