A quantum circuit design of AES
- URL: http://arxiv.org/abs/2109.12354v1
- Date: Sat, 25 Sep 2021 12:49:40 GMT
- Title: A quantum circuit design of AES
- Authors: ZeGuo Wang, ShiJie Wei, GuiLu Long
- Abstract summary: We design AES-128 and the sample-AES(S-AES) quantum circuits for deciphering.
For S-AES, a complete quantum circuit is presented with only 48 qubits, which is already within the reach of existing noisy intermediate-scale quantum computers.
- Score: 1.1049608786515839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced Encryption Standard(AES) is one of the most widely used block
ciphers nowadays, and has been established as an encryption standard in 2001.
Here we design AES-128 and the sample-AES(S-AES) quantum circuits for
deciphering. In the quantum circuit of AES-128, we perform an affine
transformation for the SubBytes part to solve the problem that the initial
state of the output qubits in SubBytes is not the $\ket{0}^{\otimes 8}$ state.
After that, we are able to encode the new round sub-key on the qubits encoding
the previous round sub-key, and this improvement reduces the number of qubits
used by 224 compared with Langenberg et al.'s implementation. For S-AES, a
complete quantum circuit is presented with only 48 qubits, which is already
within the reach of existing noisy intermediate-scale quantum computers.
Related papers
- Optimization and Synthesis of Quantum Circuits with Global Gates [44.99833362998488]
We use global interactions, such as the Global Molmer-Sorensen gate present in ion trap hardware, to optimize and synthesize quantum circuits.<n>The algorithm is based on the ZX-calculus and uses a specialized circuit extraction routine that groups entangling gates into Global MolmerSorensen gates.<n>We benchmark the algorithm in a variety of circuits, and show how it improves their performance under state-of-the-art hardware considerations.
arXiv Detail & Related papers (2025-07-28T10:25:31Z) - Quantum Hypothesis Testing Lemma for Deterministic Identification over Quantum Channels [49.126395046088014]
This work shows that the existence of a DI code in the quantum setting follows from a suitable packing in a modified space of output quantum states.<n>This result enables us to tighten the capacity lower bound for DI over quantum channels beyond the simultaneous decoding approach.
arXiv Detail & Related papers (2025-04-29T17:57:36Z) - Quantum circuit for implementing AES S-box with low costs [2.2002244657481826]
Advanced Encryption Standard (AES) is one of the most widely used and extensively studied encryption algorithms globally.
In this paper, three quantum circuits are designed to implement the S-box, which is the sole nonlinear component in AES.
arXiv Detail & Related papers (2025-03-08T06:58:44Z) - On the practicality of quantum sieving algorithms for the shortest vector problem [42.70026220176376]
lattice-based cryptography is one of the main candidates of post-quantum cryptography.
cryptographic security against quantum attackers is based on lattice problems like the shortest vector problem (SVP)
Asymptotic quantum speedups for solving SVP are known and rely on Grover's search.
arXiv Detail & Related papers (2024-10-17T16:54:41Z) - Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - A multiple-circuit approach to quantum resource reduction with application to the quantum lattice Boltzmann method [39.671915199737846]
We introduce a multiple-circuit algorithm for a quantum lattice Boltzmann method (QLBM) solve of the incompressible Navier--Stokes equations.
The presented method is validated and demonstrated for 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Systematic Design and Optimization of Quantum Circuits for Stabilizer
Codes [11.637855523244838]
Keeping qubits error free is one of the most important steps towards reliable quantum computing.
Different stabilizer codes for quantum error correction have been proposed in past decades.
We propose a formal algorithm for systematic construction of encoding circuits for general stabilizer codes.
arXiv Detail & Related papers (2023-09-21T03:21:47Z) - Quantum-enhanced symmetric cryptanalysis for S-AES [0.0]
We present an algorithm for optimized Grover's attack on downscaled Simplifed-AES cipher.
For 16-bit S-AES the proposed attack requires 23 qubits in general case and 19, 15 or 11 if 4, 8 or 12 bits were leaked in confguration.
arXiv Detail & Related papers (2023-04-11T17:46:44Z) - FIPS Compliant Quantum Secure Communication using Quantum Permutation
Pad [0.602276990341246]
This paper proposes to take a nested mode to enable TLS 1.3 protocol with quantum-safe data, which can be made available today and is compliant.
We discussed the performance impacts of the handshaking phase of the nested TLS 1.3 with PQC and the symmetric encryption phase.
arXiv Detail & Related papers (2022-12-30T21:56:35Z) - Factoring integers with sublinear resources on a superconducting quantum
processor [11.96383198580683]
Shor's algorithm has seriously challenged information security based on public key cryptosystems.
To break the widely used RSA-2048 scheme, one needs millions of physical qubits, which is far beyond current technical capabilities.
We report a universal quantum algorithm for integer factorization by combining the classical lattice reduction with a quantum approximate optimization algorithm.
arXiv Detail & Related papers (2022-12-23T14:45:02Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - First demonstration of a post-quantum key-exchange with a nanosatellite [58.579141089302816]
We demonstrate a post-quantum key-exchange with the nanosatellite SpooQy-1 in low Earth orbit using Kyber-512.
This implementation demonstrates the feasibility of a quantum-safe authenticated key-exchange and encryption system on SWaP constrained nanosatellites.
arXiv Detail & Related papers (2022-06-02T10:45:27Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Quantum Fully Homomorphic Encryption by Integrating Pauli One-time Pad
with Quaternions [4.182969308816531]
Quantum fully homomorphic encryption (QFHE) allows to evaluate quantum circuits on encrypted data.
We present a novel QFHE scheme, which extends Pauli one-time pad encryption by relying on the quaternion of SU(2).
arXiv Detail & Related papers (2020-12-08T04:54:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.