Systematic Design and Optimization of Quantum Circuits for Stabilizer
Codes
- URL: http://arxiv.org/abs/2309.12373v1
- Date: Thu, 21 Sep 2023 03:21:47 GMT
- Title: Systematic Design and Optimization of Quantum Circuits for Stabilizer
Codes
- Authors: Arijit Mondal, Keshab K. Parhi
- Abstract summary: Keeping qubits error free is one of the most important steps towards reliable quantum computing.
Different stabilizer codes for quantum error correction have been proposed in past decades.
We propose a formal algorithm for systematic construction of encoding circuits for general stabilizer codes.
- Score: 11.637855523244838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is an emerging technology that has the potential to achieve
exponential speedups over their classical counterparts. To achieve quantum
advantage, quantum principles are being applied to fields such as
communications, information processing, and artificial intelligence. However,
quantum computers face a fundamental issue since quantum bits are extremely
noisy and prone to decoherence. Keeping qubits error free is one of the most
important steps towards reliable quantum computing. Different stabilizer codes
for quantum error correction have been proposed in past decades and several
methods have been proposed to import classical error correcting codes to the
quantum domain. However, formal approaches towards the design and optimization
of circuits for these quantum encoders and decoders have so far not been
proposed. In this paper, we propose a formal algorithm for systematic
construction of encoding circuits for general stabilizer codes. This algorithm
is used to design encoding and decoding circuits for an eight-qubit code. Next,
we propose a systematic method for the optimization of the encoder circuit thus
designed. Using the proposed method, we optimize the encoding circuit in terms
of the number of 2-qubit gates used. The proposed optimized eight-qubit encoder
uses 18 CNOT gates and 4 Hadamard gates, as compared to 14 single qubit gates,
33 2-qubit gates, and 6 CCNOT gates in a prior work. The encoder and decoder
circuits are verified using IBM Qiskit. We also present optimized encoder
circuits for Steane code and a 13-qubit code in terms of the number of gates
used.
Related papers
- Engineering Fault-tolerant Bosonic Codes with Quantum Lattice Gates [1.1982127665424678]
Bosonic codes offer a hardware-efficient approach to encoding and protecting quantum information with a single continuous-variable bosonic system.
We introduce a new universal quantum gate set composed of only one type of gate element, which we call the quantum lattice gate, to engineer bosonic code states for fault-tolerant quantum computing.
arXiv Detail & Related papers (2024-10-22T14:47:44Z) - An Optimized Nearest Neighbor Compliant Quantum Circuit for 5-qubit Code [9.851172682018731]
The five-qubit quantum error correcting code encodes one logical qubit to five physical qubits, and protects the code from a single error.
We propose a systematic procedure for optimization of encoder circuits for stabilizer codes.
arXiv Detail & Related papers (2024-10-08T21:17:17Z) - Efficient recursive encoders for quantum Reed-Muller codes towards Fault tolerance [2.2940141855172036]
Efficient encoding circuits for quantum codes that admit gates are crucial to reduce noise and realize useful quantum computers.
We construct resource efficient encoders for the class of quantum codes constructed from Reed-Muller and punctured Reed-Muller codes.
These encoders on $n$ qubits have circuit depth of $O(log n)$ and lower gate counts compared to previous works.
arXiv Detail & Related papers (2024-05-23T13:28:52Z) - Near-optimal decoding algorithm for color codes using Population Annealing [44.99833362998488]
We implement a decoder that finds the recovery operation with the highest success probability.
We study the decoder performance on a 4.8.8 color code lattice under different noise models.
arXiv Detail & Related papers (2024-05-06T18:17:42Z) - Error-corrected Hadamard gate simulated at the circuit level [42.002147097239444]
We simulate the logical Hadamard gate in the surface code under a circuit-level noise model.
Our paper is the first to do this for a unitary gate on a quantum error-correction code.
arXiv Detail & Related papers (2023-12-18T19:00:00Z) - Quantum Circuits for Stabilizer Error Correcting Codes: A Tutorial [11.637855523244838]
This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes.
We present encoding and decoding circuits for five-qubit code and Steane code, along with verification of these circuits using IBM Qiskit.
arXiv Detail & Related papers (2023-09-21T05:42:04Z) - Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color
code [0.0]
We observe improved performance for encoded circuits implementing non-Clifford gates.
Our results illustrate the potential of using codes with quantum gates to implement non-trivial algorithms.
arXiv Detail & Related papers (2023-09-15T18:00:02Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.