Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization
Approach
- URL: http://arxiv.org/abs/2109.12701v3
- Date: Mon, 2 Oct 2023 01:38:45 GMT
- Title: Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization
Approach
- Authors: Dimitris Bertsimas, Ryan Cory-Wright and Nicholas A. G. Johnson
- Abstract summary: We study the Sparse Plus Low-Rank decomposition problem ( SLR )
SLR is a fundamental problem in Operations Research and Machine Learning.
We introduce a novel formulation for SLR that directly models its underlying discreteness.
- Score: 6.952045528182883
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study the Sparse Plus Low-Rank decomposition problem (SLR), which is the
problem of decomposing a corrupted data matrix into a sparse matrix of
perturbations plus a low-rank matrix containing the ground truth. SLR is a
fundamental problem in Operations Research and Machine Learning which arises in
various applications, including data compression, latent semantic indexing,
collaborative filtering, and medical imaging. We introduce a novel formulation
for SLR that directly models its underlying discreteness. For this formulation,
we develop an alternating minimization heuristic that computes high-quality
solutions and a novel semidefinite relaxation that provides meaningful bounds
for the solutions returned by our heuristic. We also develop a custom
branch-and-bound algorithm that leverages our heuristic and convex relaxations
to solve small instances of SLR to certifiable (near) optimality. Given an
input $n$-by-$n$ matrix, our heuristic scales to solve instances where
$n=10000$ in minutes, our relaxation scales to instances where $n=200$ in
hours, and our branch-and-bound algorithm scales to instances where $n=25$ in
minutes. Our numerical results demonstrate that our approach outperforms
existing state-of-the-art approaches in terms of rank, sparsity, and
mean-square error while maintaining a comparable runtime.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Predictive Low Rank Matrix Learning under Partial Observations: Mixed-Projection ADMM [5.877778007271621]
We formalize this problem as an optimization problem with an objective that balances the strength of the fit of the reconstruction to the observed entries.
We design an efficient, scalable alternating direction method of multipliers algorithm that produces high quality feasible solutions.
Our algorithm is able to solve problems with $n = 10000$ rows and $m = 10000$ columns in less than a minute.
arXiv Detail & Related papers (2024-07-18T17:33:14Z) - Stochastic Optimization Algorithms for Instrumental Variable Regression with Streaming Data [17.657917523817243]
We develop and analyze algorithms for instrumental variable regression by viewing the problem as a conditional optimization problem.
In the context of least-squares instrumental variable regression, our algorithms neither require matrix inversions nor mini-batches.
We derive rates of convergence in expectation, that are of order $mathcalO(log T/T)$ and $mathcalO (1/T1-iota)$ for any $iota>0$.
arXiv Detail & Related papers (2024-05-29T19:21:55Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - Grouped Variable Selection with Discrete Optimization: Computational and
Statistical Perspectives [9.593208961737572]
We present a new algorithmic framework for grouped variable selection that is based on discrete mathematical optimization.
Our methodology covers both high-dimensional linear regression and non- additive modeling with sparse programming.
Our exact algorithm is based on a standalone branch-and-bound (BnB) framework, which can solve the associated mixed integer (MIP) problem to certified optimality.
arXiv Detail & Related papers (2021-04-14T19:21:59Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.