DRL-based Slice Placement under Realistic Network Load Conditions
- URL: http://arxiv.org/abs/2109.12857v1
- Date: Mon, 27 Sep 2021 07:58:45 GMT
- Title: DRL-based Slice Placement under Realistic Network Load Conditions
- Authors: Jos\'e Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin and
Pierre Sens
- Abstract summary: We propose a network slice placement optimization solution based on Deep Reinforcement Learning (DRL)
The solution is adapted to networks with large scale and under non-stationary traffic conditions (namely, the network load)
We demonstrate the applicability of the proposed solution and its higher and stable performance over a non-controlled DRL-based solution.
- Score: 0.8459686722437155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose to demonstrate a network slice placement optimization solution
based on Deep Reinforcement Learning (DRL), referred to as
Heuristically-controlled DRL, which uses a heuristic to control the DRL
algorithm convergence. The solution is adapted to realistic networks with large
scale and under non-stationary traffic conditions (namely, the network load).
We demonstrate the applicability of the proposed solution and its higher and
stable performance over a non-controlled DRL-based solution. Demonstration
scenarios include full online learning with multiple volatile network slice
placement request arrivals.
Related papers
- Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
We propose a digital twin (DT) accelerated DRL solution to address this issue.
A neural network-based DT is established with a customized output layer for queuing systems, trained through supervised learning, and then employed to assist the training phase of the DRL model.
Extensive simulations show that the DT-accelerated DRL improves resource utilization by over 40% compared to the directly trained state-of-the-art dueling deep Q-learning model.
arXiv Detail & Related papers (2023-10-07T09:09:19Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
Next Generation (NextG) networks are expected to support demanding internet tactile applications such as augmented reality and connected autonomous vehicles.
Data-driven approaches can improve the ability of the network to adapt to the current operating conditions.
Deep RL (DRL) has been shown to achieve good performance even in complex environments.
arXiv Detail & Related papers (2021-12-07T03:13:20Z) - Pessimistic Model Selection for Offline Deep Reinforcement Learning [56.282483586473816]
Deep Reinforcement Learning (DRL) has demonstrated great potentials in solving sequential decision making problems in many applications.
One main barrier is the over-fitting issue that leads to poor generalizability of the policy learned by DRL.
We propose a pessimistic model selection (PMS) approach for offline DRL with a theoretical guarantee.
arXiv Detail & Related papers (2021-11-29T06:29:49Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
We compare two Deep Reinforcement Learning algorithms: a pure DRL-based algorithm and a hybrid DRL as a hybrid DRL-heuristic algorithm.
The evaluation results show that the proposed hybrid DRL-heuristic approach is more robust and reliable in case of unpredictable network load changes than pure DRL.
arXiv Detail & Related papers (2021-08-05T10:24:33Z) - DRL-based Slice Placement Under Non-Stationary Conditions [0.8459686722437155]
We consider online learning for optimal network slice placement under the assumption that slice requests arrive according to a non-stationary process.
We specifically propose two pure-DRL algorithms and two families of hybrid DRL-heuristic algorithms.
We show that the proposed hybrid DRL-heuristic algorithms require three orders of magnitude of learning episodes less than pure-DRL to achieve convergence.
arXiv Detail & Related papers (2021-08-05T10:05:12Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet of things (IoT) users.
A deep reinforcement learning (DRL) based solution is proposed, which includes the following components.
A preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy.
arXiv Detail & Related papers (2020-01-24T23:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.