DRL-based Slice Placement Under Non-Stationary Conditions
- URL: http://arxiv.org/abs/2108.02495v1
- Date: Thu, 5 Aug 2021 10:05:12 GMT
- Title: DRL-based Slice Placement Under Non-Stationary Conditions
- Authors: Jose Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin,
Pierre Sens
- Abstract summary: We consider online learning for optimal network slice placement under the assumption that slice requests arrive according to a non-stationary process.
We specifically propose two pure-DRL algorithms and two families of hybrid DRL-heuristic algorithms.
We show that the proposed hybrid DRL-heuristic algorithms require three orders of magnitude of learning episodes less than pure-DRL to achieve convergence.
- Score: 0.8459686722437155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider online learning for optimal network slice placement under the
assumption that slice requests arrive according to a non-stationary Poisson
process. We propose a framework based on Deep Reinforcement Learning (DRL)
combined with a heuristic to design algorithms. We specifically design two
pure-DRL algorithms and two families of hybrid DRL-heuristic algorithms. To
validate their performance, we perform extensive simulations in the context of
a large-scale operator infrastructure. The evaluation results show that the
proposed hybrid DRL-heuristic algorithms require three orders of magnitude of
learning episodes less than pure-DRL to achieve convergence. This result
indicates that the proposed hybrid DRL-heuristic approach is more reliable than
pure-DRL in a real non-stationary network scenario.
Related papers
- Bridging Distributionally Robust Learning and Offline RL: An Approach to
Mitigate Distribution Shift and Partial Data Coverage [32.578787778183546]
offline reinforcement learning (RL) algorithms learn optimal polices using historical (offline) data.
One of the main challenges in offline RL is the distribution shift.
We propose two offline RL algorithms using the distributionally robust learning (DRL) framework.
arXiv Detail & Related papers (2023-10-27T19:19:30Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - Understanding the Synergies between Quality-Diversity and Deep
Reinforcement Learning [4.788163807490196]
Generalized Actor-Critic QD-RL is a unified modular framework for actor-critic deep RL methods in the QD-RL setting.
We introduce two new algorithms, PGA-ME (SAC) and PGA-ME (DroQ) which apply recent advancements in Deep RL to the QD-RL setting.
arXiv Detail & Related papers (2023-03-10T19:02:42Z) - LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement
Learning [78.2286146954051]
LCRL implements model-free Reinforcement Learning (RL) algorithms over unknown Decision Processes (MDPs)
We present case studies to demonstrate the applicability, ease of use, scalability, and performance of LCRL.
arXiv Detail & Related papers (2022-09-21T13:21:00Z) - Pessimistic Model Selection for Offline Deep Reinforcement Learning [56.282483586473816]
Deep Reinforcement Learning (DRL) has demonstrated great potentials in solving sequential decision making problems in many applications.
One main barrier is the over-fitting issue that leads to poor generalizability of the policy learned by DRL.
We propose a pessimistic model selection (PMS) approach for offline DRL with a theoretical guarantee.
arXiv Detail & Related papers (2021-11-29T06:29:49Z) - DRL-based Slice Placement under Realistic Network Load Conditions [0.8459686722437155]
We propose a network slice placement optimization solution based on Deep Reinforcement Learning (DRL)
The solution is adapted to networks with large scale and under non-stationary traffic conditions (namely, the network load)
We demonstrate the applicability of the proposed solution and its higher and stable performance over a non-controlled DRL-based solution.
arXiv Detail & Related papers (2021-09-27T07:58:45Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
We compare two Deep Reinforcement Learning algorithms: a pure DRL-based algorithm and a hybrid DRL as a hybrid DRL-heuristic algorithm.
The evaluation results show that the proposed hybrid DRL-heuristic approach is more robust and reliable in case of unpredictable network load changes than pure DRL.
arXiv Detail & Related papers (2021-08-05T10:24:33Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet of things (IoT) users.
A deep reinforcement learning (DRL) based solution is proposed, which includes the following components.
A preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy.
arXiv Detail & Related papers (2020-01-24T23:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.