Deep Learning Based Resource Assignment for Wireless Networks
- URL: http://arxiv.org/abs/2109.12970v1
- Date: Mon, 27 Sep 2021 11:51:24 GMT
- Title: Deep Learning Based Resource Assignment for Wireless Networks
- Authors: Minseok Kim, Hoon Lee, Hongju Lee, and Inkyu Lee
- Abstract summary: This paper presents a deep learning approach for binary assignment problems in wireless networks, which identifies binary variables for permutation matrices.
Numerical results demonstrate the effectiveness of the proposed method in various scenarios.
- Score: 25.138235752143586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a deep learning approach for binary assignment problems in
wireless networks, which identifies binary variables for permutation matrices.
This poses challenges in designing a structure of a neural network and its
training strategies for generating feasible assignment solutions. To this end,
this paper develop a new Sinkhorn neural network which learns a non-convex
projection task onto a set of permutation matrices. An unsupervised training
algorithm is proposed where the Sinkhorn neural network can be applied to
network assignment problems. Numerical results demonstrate the effectiveness of
the proposed method in various network scenarios.
Related papers
- On the Principles of ReLU Networks with One Hidden Layer [0.0]
It remains unclear how to interpret the mechanism of its solutions obtained by the back-propagation algorithm.
It is shown that, both theoretically and experimentally, the training solution for the one-dimensional input could be completely understood.
arXiv Detail & Related papers (2024-11-11T05:51:11Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Credit Assignment for Trained Neural Networks Based on Koopman Operator
Theory [3.130109807128472]
Credit assignment problem of neural networks refers to evaluating the credit of each network component to the final outputs.
This paper presents an alternative perspective of linear dynamics on dealing with the credit assignment problem for trained neural networks.
Experiments conducted on typical neural networks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-02T06:34:27Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
sinusoidal neural networks with activations have been proposed as an alternative to networks with traditional activation functions.
We first propose a simplified version of such sinusoidal neural networks, which allows both for easier practical implementation and simpler theoretical analysis.
We then analyze the behavior of these networks from the neural tangent kernel perspective and demonstrate that their kernel approximates a low-pass filter with an adjustable bandwidth.
arXiv Detail & Related papers (2022-11-26T07:41:48Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
We study the inductive biases of linearizations of neural networks, which we show to be surprisingly good summaries of the full network functions.
Inspired by this finding, we propose a technique for embedding these inductive biases into Gaussian processes through a kernel designed from the Jacobian of the network.
In this setting, domain adaptation takes the form of interpretable posterior inference, with accompanying uncertainty estimation.
arXiv Detail & Related papers (2021-03-02T03:23:03Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - A biologically plausible neural network for local supervision in
cortical microcircuits [17.00937011213428]
We derive an algorithm for training a neural network which avoids explicit error and backpropagation.
Our algorithm maps onto a neural network that bears a remarkable resemblance to the connectivity structure and learning rules of the cortex.
arXiv Detail & Related papers (2020-11-30T17:35:22Z) - Backprojection for Training Feedforward Neural Networks in the Input and
Feature Spaces [12.323996999894002]
We propose a new algorithm for training feedforward neural networks which is fairly faster than backpropagation.
The proposed algorithm can be used for both input and feature spaces, named as backprojection and kernel backprojection, respectively.
arXiv Detail & Related papers (2020-04-05T20:53:11Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.