Evolving Evolutionary Algorithms using Linear Genetic Programming
- URL: http://arxiv.org/abs/2109.13110v1
- Date: Sat, 21 Aug 2021 19:15:07 GMT
- Title: Evolving Evolutionary Algorithms using Linear Genetic Programming
- Authors: Mihai Oltean
- Abstract summary: The model is based on the Linear Genetic Programming (LGP) technique.
Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem, and the Quadratic Assignment Problem are evolved by using the considered model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new model for evolving Evolutionary Algorithms is proposed in this paper.
The model is based on the Linear Genetic Programming (LGP) technique. Every LGP
chromosome encodes an EA which is used for solving a particular problem.
Several Evolutionary Algorithms for function optimization, the Traveling
Salesman Problem, and the Quadratic Assignment Problem are evolved by using the
considered model. Numerical experiments show that the evolved Evolutionary
Algorithms perform similarly and sometimes even better than standard approaches
for several well-known benchmarking problems.
Related papers
- Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
In this paper, we analyze the usefulness of using genetic algorithms depending on the approximation class the problem belongs to.
In particular, we use the standard approximability hierarchy, showing that genetic algorithms are especially useful for the most pessimistic classes of the hierarchy.
arXiv Detail & Related papers (2024-02-01T09:18:34Z) - Benchmarking Differential Evolution on a Quantum Simulator [0.0]
Differential Evolution (DE) can be used to compute the minima of functions such as the rastrigin function and rosenbrock function.
This work is an attempt to study the result of applying the DE method on these functions with candidate individuals generated on classical Turing modeled computation.
arXiv Detail & Related papers (2023-11-06T14:27:00Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Evolving Evolutionary Algorithms with Patterns [0.0]
The model is based on the Multi Expression Programming (MEP) technique.
Several evolutionary algorithms for function optimization are evolved by using the considered model.
arXiv Detail & Related papers (2021-10-10T16:26:20Z) - Evolving Evolutionary Algorithms using Multi Expression Programming [0.0]
Instead of evolving only the parameters of the algorithm we will evolve an entire EA capable of solving a particular problem.
An nongenerational EA for function optimization is evolved in this paper.
Numerical experiments show the effectiveness of this approach.
arXiv Detail & Related papers (2021-08-22T09:30:57Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z) - Genetic optimization algorithms applied toward mission computability
models [0.3655021726150368]
Genetic algorithms are computations based and low cost to compute.
We describe our genetic optimization algorithms to a mission-critical and constraints-aware problem.
arXiv Detail & Related papers (2020-05-27T00:45:24Z) - Devolutionary genetic algorithms with application to the minimum
labeling Steiner tree problem [0.0]
This paper characterizes and discusses devolutionary genetic algorithms and evaluates their performances in solving the minimum labeling Steiner tree (MLST) problem.
We define devolutionary algorithms as the process of reaching a feasible solution by devolving a population of super-optimal unfeasible solutions over time.
We show how classical evolutionary concepts, such as crossing, mutation and fitness can be adapted to aim at reaching an optimal or close-to-optimal solution.
arXiv Detail & Related papers (2020-04-18T13:27:28Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.