Evolving Evolutionary Algorithms with Patterns
- URL: http://arxiv.org/abs/2110.05951v1
- Date: Sun, 10 Oct 2021 16:26:20 GMT
- Title: Evolving Evolutionary Algorithms with Patterns
- Authors: Mihai Oltean
- Abstract summary: The model is based on the Multi Expression Programming (MEP) technique.
Several evolutionary algorithms for function optimization are evolved by using the considered model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new model for evolving Evolutionary Algorithms (EAs) is proposed in this
paper. The model is based on the Multi Expression Programming (MEP) technique.
Each MEP chromosome encodes an evolutionary pattern that is repeatedly used for
generating the individuals of a new generation. The evolved pattern is embedded
into a standard evolutionary scheme that is used for solving a particular
problem. Several evolutionary algorithms for function optimization are evolved
by using the considered model. The evolved evolutionary algorithms are compared
with a human-designed Genetic Algorithm. Numerical experiments show that the
evolved evolutionary algorithms can compete with standard approaches for
several well-known benchmarking problems.
Related papers
- Benchmarking Differential Evolution on a Quantum Simulator [0.0]
Differential Evolution (DE) can be used to compute the minima of functions such as the rastrigin function and rosenbrock function.
This work is an attempt to study the result of applying the DE method on these functions with candidate individuals generated on classical Turing modeled computation.
arXiv Detail & Related papers (2023-11-06T14:27:00Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - EvoVGM: A Deep Variational Generative Model for Evolutionary Parameter
Estimation [0.0]
We propose a method for a deep variational Bayesian generative model that jointly approximates the true posterior of local biological evolutionary parameters.
We show the consistency and effectiveness of the method on synthetic sequence alignments simulated with several evolutionary scenarios and on a real virus sequence alignment.
arXiv Detail & Related papers (2022-05-25T20:08:10Z) - Using Genetic Programming to Predict and Optimize Protein Function [65.25258357832584]
We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
arXiv Detail & Related papers (2022-02-08T18:08:08Z) - Applications of Gaussian Mutation for Self Adaptation in Evolutionary
Genetic Algorithms [0.0]
In 1960, the first genetic algorithm was developed by John H. Holland and his student.
We explore the mathematical intuition of the genetic algorithm in developing systems capable of evolving using Gaussian mutation.
arXiv Detail & Related papers (2022-01-02T04:18:25Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - Evolving Evolutionary Algorithms using Linear Genetic Programming [0.0]
The model is based on the Linear Genetic Programming (LGP) technique.
Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem, and the Quadratic Assignment Problem are evolved by using the considered model.
arXiv Detail & Related papers (2021-08-21T19:15:07Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z) - Devolutionary genetic algorithms with application to the minimum
labeling Steiner tree problem [0.0]
This paper characterizes and discusses devolutionary genetic algorithms and evaluates their performances in solving the minimum labeling Steiner tree (MLST) problem.
We define devolutionary algorithms as the process of reaching a feasible solution by devolving a population of super-optimal unfeasible solutions over time.
We show how classical evolutionary concepts, such as crossing, mutation and fitness can be adapted to aim at reaching an optimal or close-to-optimal solution.
arXiv Detail & Related papers (2020-04-18T13:27:28Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.