Compact Redistricting Plans Have Many Spanning Trees
- URL: http://arxiv.org/abs/2109.13394v2
- Date: Tue, 26 Oct 2021 19:02:54 GMT
- Title: Compact Redistricting Plans Have Many Spanning Trees
- Authors: Ariel D. Procaccia and Jamie Tucker-Foltz
- Abstract summary: In the design and analysis of political redistricting maps, it is often useful to be able to sample from the space of all partitions of the graph of census blocks into connected subgraphs of equal population.
In this paper, we establish an inverse exponential relationship between the total length of the boundaries separating districts and the probability that such a map will be sampled.
- Score: 39.779544988993294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the design and analysis of political redistricting maps, it is often
useful to be able to sample from the space of all partitions of the graph of
census blocks into connected subgraphs of equal population. There are
influential Markov chain Monte Carlo methods for doing so that are based on
sampling and splitting random spanning trees. Empirical evidence suggests that
the distributions such algorithms sample from place higher weight on more
"compact" redistricting plans, which is a practically useful and desirable
property. In this paper, we confirm these observations analytically,
establishing an inverse exponential relationship between the total length of
the boundaries separating districts and the probability that such a map will be
sampled. This result provides theoretical underpinnings for algorithms that are
already making a significant real-world impact.
Related papers
- Multiscale Parallel Tempering for Fast Sampling on Redistricting Plans [1.1233768932957773]
A persuasive method is to compare the plan with an ensemble of neutrally drawn redistricting plans.
To audit the partisan difference between the ensemble and a given plan, one must ensure that the non-partisan criteria are matched.
In this work, we generate a multiscale parallel tempering approach that makes local moves at each scale.
arXiv Detail & Related papers (2024-01-30T21:33:05Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Spanning tree methods for sampling graph partitions [0.7658085223797904]
A districting plan can be viewed as a balanced partition of a graph into connected subsets.
RevReCom converges to the simple, natural distribution that ReCom was originally designed to approximate.
arXiv Detail & Related papers (2022-10-04T06:18:33Z) - Measuring Geometric Similarity Across Possible Plans for Automated
Redistricting [0.0]
This paper briefly introduces an interpretive measure of similarity, and a corresponding assignment matrix, that corresponds to the percentage of a state's area or population that stays in the same congressional district between two plans.
We then show how to calculate this measure in an intuitive time and briefly demonstrate some potential use-cases.
arXiv Detail & Related papers (2021-11-17T03:37:25Z) - Compactness statistics for spanning tree recombination [0.0]
"ReCom" method produces plans with more compact districts than some other methods.
We construct ensembles of 2-district plans for two grid graphs and for the precinct graph of Boulder County, CO.
This is an important step towards understanding compactness properties for districting plans produced by the ReCom method.
arXiv Detail & Related papers (2021-03-03T21:39:51Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
We consider learning Ising tree models when the observations from the nodes are corrupted by independent but non-identically distributed noise.
Katiyar et al. (2020) showed that although the exact tree structure cannot be recovered, one can recover a partial tree structure.
We propose Symmetrized Geometric Averaging (SGA), a more statistically robust algorithm for partial tree recovery.
arXiv Detail & Related papers (2021-01-22T01:57:35Z) - Sequential Monte Carlo for Sampling Balanced and Compact Redistricting
Plans [0.0]
We present a new Sequential Monte Carlo (SMC) algorithm that generates a sample of redistricting plans converging to a realistic target distribution.
We validate the accuracy of the proposed algorithm by using a small map where all redistricting plans can be enumerated.
We then apply the SMC algorithm to evaluate the partisan implications of several maps submitted by relevant parties in a recent high-profile redistricting case in the state of Pennsylvania.
arXiv Detail & Related papers (2020-08-13T23:26:34Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
We study how the interplay between the latent distribution and the complexity of the pushforward map affects performance.
Motivated by our analysis, we advocate learning the latent distribution as well as the pushforward map within the GAN paradigm.
arXiv Detail & Related papers (2020-07-29T07:31:33Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - A General Method for Robust Learning from Batches [56.59844655107251]
We consider a general framework of robust learning from batches, and determine the limits of both classification and distribution estimation over arbitrary, including continuous, domains.
We derive the first robust computationally-efficient learning algorithms for piecewise-interval classification, and for piecewise-polynomial, monotone, log-concave, and gaussian-mixture distribution estimation.
arXiv Detail & Related papers (2020-02-25T18:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.