Measuring Geometric Similarity Across Possible Plans for Automated
Redistricting
- URL: http://arxiv.org/abs/2111.08889v1
- Date: Wed, 17 Nov 2021 03:37:25 GMT
- Title: Measuring Geometric Similarity Across Possible Plans for Automated
Redistricting
- Authors: Gilvir Gill
- Abstract summary: This paper briefly introduces an interpretive measure of similarity, and a corresponding assignment matrix, that corresponds to the percentage of a state's area or population that stays in the same congressional district between two plans.
We then show how to calculate this measure in an intuitive time and briefly demonstrate some potential use-cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic and statistical approaches to congressional redistricting are
becoming increasingly valuable tools in courts and redistricting commissions
for quantifying gerrymandering in the United States. While there is existing
literature covering how various Markov chain Monte Carlo distributions differ
in terms of projected electoral outcomes and geometric quantifiers of
compactness, there is still work to be done on measuring similarities between
different congressional redistricting plans. This paper briefly introduces an
intuitive and interpretive measure of similarity, and a corresponding
assignment matrix, that corresponds to the percentage of a state's area or
population that stays in the same congressional district between two plans. We
then show how to calculate this measure in polynomial time and briefly
demonstrate some potential use-cases.
Related papers
- Multiscale Parallel Tempering for Fast Sampling on Redistricting Plans [1.1233768932957773]
A persuasive method is to compare the plan with an ensemble of neutrally drawn redistricting plans.
To audit the partisan difference between the ensemble and a given plan, one must ensure that the non-partisan criteria are matched.
In this work, we generate a multiscale parallel tempering approach that makes local moves at each scale.
arXiv Detail & Related papers (2024-01-30T21:33:05Z) - Counting Like Human: Anthropoid Crowd Counting on Modeling the
Similarity of Objects [92.80955339180119]
mainstream crowd counting methods regress density map and integrate it to obtain counting results.
Inspired by this, we propose a rational and anthropoid crowd counting framework.
arXiv Detail & Related papers (2022-12-02T07:00:53Z) - Expected Frequency Matrices of Elections: Computation, Geometry, and
Preference Learning [58.23459346724491]
We use the "map of elections" approach of Szufa et al. (AAMAS 2020) to analyze several well-known vote distributions.
We draw the "skeleton map" of distributions, evaluate its robustness, and analyze its properties.
arXiv Detail & Related papers (2022-05-16T17:40:22Z) - Compact Redistricting Plans Have Many Spanning Trees [39.779544988993294]
In the design and analysis of political redistricting maps, it is often useful to be able to sample from the space of all partitions of the graph of census blocks into connected subgraphs of equal population.
In this paper, we establish an inverse exponential relationship between the total length of the boundaries separating districts and the probability that such a map will be sampled.
arXiv Detail & Related papers (2021-09-27T23:36:01Z) - A Statistical Analysis of Summarization Evaluation Metrics using
Resampling Methods [60.04142561088524]
We find that the confidence intervals are rather wide, demonstrating high uncertainty in how reliable automatic metrics truly are.
Although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do in some evaluation settings.
arXiv Detail & Related papers (2021-03-31T18:28:14Z) - Colorado in Context: Congressional Redistricting and Competing Fairness
Criteria in Colorado [0.0]
We generate a large random sample of reasonable redistricting plans and determine the partisan balance of each district using returns from state-wide elections in 2018.
We investigate the relationships between partisan outcomes, number of counties which are split, and number of competitive districts in a plan.
arXiv Detail & Related papers (2020-11-11T20:05:50Z) - Sequential Monte Carlo for Sampling Balanced and Compact Redistricting
Plans [0.0]
We present a new Sequential Monte Carlo (SMC) algorithm that generates a sample of redistricting plans converging to a realistic target distribution.
We validate the accuracy of the proposed algorithm by using a small map where all redistricting plans can be enumerated.
We then apply the SMC algorithm to evaluate the partisan implications of several maps submitted by relevant parties in a recent high-profile redistricting case in the state of Pennsylvania.
arXiv Detail & Related papers (2020-08-13T23:26:34Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - The Essential Role of Empirical Validation in Legislative Redistricting
Simulation [0.0]
We apply a recently developed computational method that can efficiently enumerate all possible redistricting plans.
We show that this algorithm scales to a state with a couple of hundred geographical units.
arXiv Detail & Related papers (2020-06-17T20:51:43Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.