Deep Reinforcement Learning with Adjustments
- URL: http://arxiv.org/abs/2109.13463v1
- Date: Tue, 28 Sep 2021 03:35:09 GMT
- Title: Deep Reinforcement Learning with Adjustments
- Authors: Hamed Khorasgani, Haiyan Wang, Chetan Gupta, and Susumu Serita
- Abstract summary: We propose a new Q-learning algorithm for continuous action space, which can bridge the control and RL algorithms.
Our method can learn complex policies to achieve long-term goals and at the same time it can be easily adjusted to address short-term requirements.
- Score: 10.244120641608447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (RL) algorithms can learn complex policies to
optimize agent operation over time. RL algorithms have shown promising results
in solving complicated problems in recent years. However, their application on
real-world physical systems remains limited. Despite the advancements in RL
algorithms, the industries often prefer traditional control strategies.
Traditional methods are simple, computationally efficient and easy to adjust.
In this paper, we first propose a new Q-learning algorithm for continuous
action space, which can bridge the control and RL algorithms and bring us the
best of both worlds. Our method can learn complex policies to achieve long-term
goals and at the same time it can be easily adjusted to address short-term
requirements without retraining. Next, we present an approximation of our
algorithm which can be applied to address short-term requirements of any
pre-trained RL algorithm. The case studies demonstrate that both our proposed
method as well as its practical approximation can achieve short-term and
long-term goals without complex reward functions.
Related papers
- How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - CACTO: Continuous Actor-Critic with Trajectory Optimization -- Towards
global optimality [5.0915256711576475]
This paper presents a novel algorithm for the continuous control of dynamical systems that combines Trayy (TO) and Reinforcement Learning (RL) in a single trajectory.
arXiv Detail & Related papers (2022-11-12T10:16:35Z) - Ensemble Reinforcement Learning in Continuous Spaces -- A Hierarchical
Multi-Step Approach for Policy Training [4.982806898121435]
We propose a new technique to train an ensemble of base learners based on an innovative multi-step integration method.
This training technique enables us to develop a new hierarchical learning algorithm for ensemble DRL that effectively promotes inter-learner collaboration.
The algorithm is also shown empirically to outperform several state-of-the-art DRL algorithms on multiple benchmark RL problems.
arXiv Detail & Related papers (2022-09-29T00:42:44Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Constraint Sampling Reinforcement Learning: Incorporating Expertise For
Faster Learning [43.562783189118]
We introduce a practical algorithm for incorporating human insight to speed learning.
Our algorithm, Constraint Sampling Reinforcement Learning (CSRL), incorporates prior domain knowledge as constraints/restrictions on the RL policy.
In all cases, CSRL learns a good policy faster than baselines.
arXiv Detail & Related papers (2021-12-30T22:02:42Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks.
This problem is still not fully understood, for which two major challenges need to be addressed.
We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches.
arXiv Detail & Related papers (2020-10-02T17:13:39Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
Reinforcement learning algorithms update an agent's parameters according to one of several possible rules.
This paper introduces a new meta-learning approach that discovers an entire update rule.
It includes both 'what to predict' (e.g. value functions) and 'how to learn from it' by interacting with a set of environments.
arXiv Detail & Related papers (2020-07-17T07:38:39Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.