論文の概要: A Strong Baseline for the VIPriors Data-Efficient Image Classification
Challenge
- arxiv url: http://arxiv.org/abs/2109.13561v1
- Date: Tue, 28 Sep 2021 08:45:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2021-09-29 23:53:42.734629
- Title: A Strong Baseline for the VIPriors Data-Efficient Image Classification
Challenge
- Title(参考訳): VIPriors Data-Efficient Image Classification Challengeのための強力なベースライン
- Authors: Bj\"orn Barz, Lorenzo Brigato, Luca Iocchi, Joachim Denzler
- Abstract要約: 本稿では,VIPriorsチャレンジデータセットに基づく,データ効率の高い画像分類のための強力なベースラインを提案する。
我々のベースラインは精度69.7%に達し、VIPriors 2021チャレンジへの応募の50%を上回っている。
- 参考スコア(独自算出の注目度): 9.017660524497389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from limited amounts of data is the hallmark of intelligence,
requiring strong generalization and abstraction skills. In a machine learning
context, data-efficient methods are of high practical importance since data
collection and annotation are prohibitively expensive in many domains. Thus,
coordinated efforts to foster progress in this area emerged recently, e.g., in
the form of dedicated workshops and competitions. Besides a common benchmark,
measuring progress requires strong baselines. We present such a strong baseline
for data-efficient image classification on the VIPriors challenge dataset,
which is a sub-sampled version of ImageNet-1k with 100 images per class. We do
not use any methods tailored to data-efficient classification but only standard
models and techniques as well as common competition tricks and thorough
hyper-parameter tuning. Our baseline achieves 69.7% accuracy on the VIPriors
image classification dataset and outperforms 50% of submissions to the VIPriors
2021 challenge.
- Abstract(参考訳): 限られた量のデータから学ぶことは知性の目印であり、強力な一般化と抽象化のスキルを必要とする。
機械学習の文脈では、多くのドメインにおいてデータ収集やアノテーションは違法に高価であるため、データ効率のよい手法は極めて重要である。
このように、この地域の進歩を促進するための協調的な努力が最近現れ、例えば、専用のワークショップやコンペティションの形で現れた。
一般的なベンチマークに加えて、進捗の測定には強いベースラインが必要です。
本稿では,imagenet-1kのサブサンプリング版であるvipriors challengeデータセットにおける,データ効率の高い画像分類のための強力なベースラインを提案する。
データ効率のよい分類に合わせた手法は一切使用しないが、標準モデルや技術、一般的な競合トリックや徹底的なハイパーパラメータチューニングのみを使用する。
我々のベースラインはVIPriors画像分類データセットで69.7%の精度を達成し、VIPriors 2021チャレンジへの投稿の50%を上回っている。
関連論文リスト
- Low-Biased General Annotated Dataset Generation [62.04202037186855]
低バイアスの一般アノテーション付きデータセット生成フレームワーク(lbGen)を提案する。
高価な手作業による収集ではなく,カテゴリアノテーションを用いた低バイアス画像を直接生成することを目的としている。
実験結果から,手動ラベル付きデータセットや他の合成データセットと比較して,生成した低バイアスデータセットの利用により,一般化能力の安定が図られた。
論文 参考訳(メタデータ) (2024-12-14T13:28:40Z) - Cross-Level Distillation and Feature Denoising for Cross-Domain Few-Shot
Classification [49.36348058247138]
トレーニング段階において,対象領域内のラベルなし画像のごく一部をアクセス可能にすることで,ドメイン間数ショット分類の問題に対処する。
我々は,対象データセットのより識別的な特徴を抽出するモデルの能力を高めるため,クロスレベルな知識蒸留法を慎重に設計する。
提案手法は,従来の動的蒸留法を5.44%,1.37%,5ショット分類法を1.37%超えることができる。
論文 参考訳(メタデータ) (2023-11-04T12:28:04Z) - No Data Augmentation? Alternative Regularizations for Effective Training
on Small Datasets [0.0]
我々は、小さな画像分類データセットにおける教師あり学習の限界を推し進めるために、代替正規化戦略について研究する。
特に,モデルパラメータのノルムを通した最適学習率と重み減衰対の選択に非依存を用いる。
テスト精度は66.5%に達し、最先端の手法に匹敵する。
論文 参考訳(メタデータ) (2023-09-04T16:13:59Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - Large-scale Unsupervised Semantic Segmentation [163.3568726730319]
本稿では, 大規模無教師付きセマンティックセマンティックセグメンテーション (LUSS) の新たな課題を提案する。
ImageNetデータセットに基づいて、120万のトレーニング画像と40万の高品質なセマンティックセグメンテーションアノテーションを用いた画像Net-Sデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-06T15:02:11Z) - Unifying Remote Sensing Image Retrieval and Classification with Robust
Fine-tuning [3.6526118822907594]
新しい大規模トレーニングおよびテストデータセットであるSF300で、リモートセンシングイメージの検索と分類を統一することを目指しています。
本研究では,ImageNetの事前学習ベースラインと比較して,9つのデータセットの検索性能と分類性能を体系的に向上させることを示す。
論文 参考訳(メタデータ) (2021-02-26T11:01:30Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
本稿では,学習ラベルの提供するものよりも細かな表現を学習する問題に対処する。
粗いラベルと下層の細粒度潜在空間を併用することにより、カテゴリレベルの検索手法の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2020-11-25T19:06:26Z) - Unsupervised Image Classification for Deep Representation Learning [42.09716669386924]
埋め込みクラスタリングを使わずに、教師なしのイメージ分類フレームワークを提案する。
提案手法の有効性を証明するために,ImageNetデータセットの実験を行った。
論文 参考訳(メタデータ) (2020-06-20T02:57:06Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
機能学習とクラスタリングを分離する2段階のアプローチを提唱する。
表現学習からの自己教師型タスクを用いて意味論的意味のある特徴を得る。
我々は、ImageNet上で有望な結果を得、低データ体制下では、いくつかの半教師付き学習方法より優れています。
論文 参考訳(メタデータ) (2020-05-25T18:12:33Z) - Google Landmarks Dataset v2 -- A Large-Scale Benchmark for
Instance-Level Recognition and Retrieval [9.922132565411664]
大規模できめ細かいインスタンス認識と画像検索のための新しいベンチマークであるGoogle Landmarks dataset v2(GLDv2)を紹介した。
GLDv2は、500万以上の画像と200万のインスタンスラベルを含む、これまでで最大のデータセットである。
ウィキメディア・コモンズ(Wikimedia Commons)は、世界最大のクラウドソースによるランドマーク写真コレクションである。
論文 参考訳(メタデータ) (2020-04-03T22:52:17Z) - Reinforced active learning for image segmentation [34.096237671643145]
深部強化学習(RL)に基づく意味的セグメンテーションのための新しいアクティブラーニング戦略を提案する。
エージェントは、ラベルなしデータのプールからラベル付けされる小さな情報領域(画像全体とは対照的に)のサブセットを選択するポリシーを学ぶ。
本手法では, 意味的セグメンテーション問題の大規模性質に適応して, 能動的学習のための深部Q-network (DQN) の定式化を新たに提案する。
論文 参考訳(メタデータ) (2020-02-16T14:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。