論文の概要: Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing
- arxiv url: http://arxiv.org/abs/2109.13570v1
- Date: Tue, 28 Sep 2021 09:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 23:48:17.791545
- Title: Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing
- Title(参考訳): 深部強化学習を用いたUAVアクティブセンシングのための適応形経路計画
- Authors: Julius R\"uckin, Liren Jin, Marija Popovi\'c
- Abstract要約: 深層強化学習(RL)に基づく情報経路計画のための新しい手法を提案する。
本手法は,モンテカルロ木探索とオフライン学習ニューラルネットワークを組み合わせた情報知覚行動の予測を行う。
ミッション中にトレーニングされたネットワークをデプロイすることにより、限られた計算資源を持つ物理プラットフォーム上で、サンプル効率の良いオンラインリプランニングが可能になる。
- 参考スコア(独自算出の注目度): 2.6519061087638014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aerial robots are increasingly being utilized for a wide range of
environmental monitoring and exploration tasks. However, a key challenge is
efficiently planning paths to maximize the information value of acquired data
as an initially unknown environment is explored. To address this, we propose a
new approach for informative path planning (IPP) based on deep reinforcement
learning (RL). Bridging the gap between recent advances in RL and robotic
applications, our method combines Monte Carlo tree search with an
offline-learned neural network predicting informative sensing actions. We
introduce several components making our approach applicable for robotic tasks
with continuous high-dimensional state spaces and large action spaces. By
deploying the trained network during a mission, our method enables
sample-efficient online replanning on physical platforms with limited
computational resources. Evaluations using synthetic data show that our
approach performs on par with existing information-gathering methods while
reducing runtime by a factor of 8-10. We validate the performance of our
framework using real-world surface temperature data from a crop field.
- Abstract(参考訳): 航空ロボットは、幅広い環境監視や探査のタスクに利用されるようになっている。
しかし、重要な課題は、最初に未知の環境として取得したデータの情報を最大化する経路を効率的に計画することである。
そこで我々は,深層強化学習(RL)に基づく情報経路計画(IPP)の新たなアプローチを提案する。
近年のrlとロボットアプリケーションとのギャップを埋めるために,モンテカルロ木探索と,情報センシング動作を予測するオフライン学習ニューラルネットワークを組み合わせた手法を提案する。
本稿では,高次元状態空間と大規模動作空間を有するロボット作業に適用可能ないくつかのコンポーネントを提案する。
ミッション中にトレーニングされたネットワークをデプロイすることにより、限られた計算資源を持つ物理プラットフォーム上で、サンプル効率の良いオンラインリプランニングが可能になる。
合成データを用いて評価した結果,既存の情報収集手法と同等に動作し,実行時間を8-10倍に削減した。
本研究では,実世界の地表面温度データを用いて,このフレームワークの性能を検証する。
関連論文リスト
- PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
PLANRLは、ロボットがいつ古典的な動き計画を使うべきか、いつポリシーを学ぶべきかを選択するためのフレームワークである。
PLANRLは2つの操作モードを切り替える: オブジェクトから離れたときに古典的なテクニックを使ってウェイポイントに到達し、オブジェクトと対話しようとするときに細かい操作制御を行う。
我々は,複数の課題のあるシミュレーション環境と実世界のタスクにまたがってアプローチを評価し,既存手法と比較して適応性,効率,一般化の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-07T19:30:08Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning [22.48658555542736]
ロボットデータ取得における重要な課題は、当初未知の環境を抜けて観測を収集する計画経路である。
そこで本研究では,未知の3D環境において,ロボット経路を適応的に計画し,対象をマップする深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-02-07T14:24:41Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
我々は,タスクと現在の知識を考慮に入れながら,探索を計画できる手法を開発した。
本手法は, 探索基準値よりも2倍少ないサンプルで, 強いポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-06T20:28:55Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
重要な課題は、大規模な環境で取得したデータの価値を最大化するミッションを計画することである。
これは例えば、農地のモニタリングに関係している。
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T11:03:28Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Flexible and Efficient Long-Range Planning Through Curious Exploration [13.260508939271764]
The Curious Sample Planner can realize temporallyextended plan for a wide range of really 3D task。
対照的に、標準的な計画と学習の方法は、多くの場合、これらのタスクを全く解決しなかったり、膨大な数のトレーニングサンプルでのみ実行できなかったりします。
論文 参考訳(メタデータ) (2020-04-22T21:47:29Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。