論文の概要: Multi-Task Triplet Loss for Named Entity Recognition using Supplementary
Text
- arxiv url: http://arxiv.org/abs/2109.13736v1
- Date: Tue, 31 Aug 2021 01:13:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-03 13:25:59.741133
- Title: Multi-Task Triplet Loss for Named Entity Recognition using Supplementary
Text
- Title(参考訳): 補助テキストを用いた名前付きエンティティ認識のためのマルチタスクトリプルト損失
- Authors: Ryan Siskind, Shalin Shah
- Abstract要約: 項目タイトルの埋め込みと記述を対比するために,三重項損失を用いる。
マルチタスクNERアルゴリズムにおける三重項損失を用いることで、精度とリコールの両面を小さなパーセンテージで向上することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retail item data contains many different forms of text like the title of an
item, the description of an item, item name and reviews. It is of interest to
identify the item name in the other forms of text using a named entity tagger.
However, the title of an item and its description are syntactically different
(but semantically similar) in that the title is not necessarily a well formed
sentence while the description is made up of well formed sentences. In this
work, we use a triplet loss to contrast the embeddings of the item title with
the description to establish a proof of concept. We find that using the triplet
loss in a multi-task NER algorithm improves both the precision and recall by a
small percentage. While the improvement is small, we think it is a step in the
right direction of using various forms of text in a multi-task algorithm. In
addition to precision and recall, the multi task triplet loss method is also
found to significantly improve the exact match accuracy i.e. the accuracy of
tagging the entire set of tokens in the text with correct tags.
- Abstract(参考訳): 小売商品データには、項目のタイトル、項目の説明、項目名、レビューなど、多くの異なる形式のテキストが含まれている。
名前付きエンティティタグを使用して、他の形式のテキストでアイテム名を識別することは興味深い。
しかし、項目の題名とその記述が構文的に異なる(しかし意味的に類似している)ため、その題名は必ずしもよく形成された文ではなく、記述はよく形成された文で構成されている。
本研究では,概念の証明を確立するために,項目タイトルの埋め込みと記述との対比に三重項損失を用いる。
マルチタスクNERアルゴリズムにおける三重項損失を用いることで、精度とリコールの両面を小さなパーセンテージで向上することがわかった。
改善は小さいが、マルチタスクアルゴリズムで様々な形式のテキストを使用するための正しい方向への一歩であると考えている。
精度とリコールに加えて、マルチタスク三重項損失法(multi task triplet loss method)は、正確なマッチング精度、すなわち、テキスト中のトークンのセット全体を正しいタグでタグ付けする精度を大幅に向上させる。
関連論文リスト
- LESS: Label-Efficient and Single-Stage Referring 3D Segmentation [55.06002976797879]
参照3Dは、クエリの文で記述された3Dポイントクラウドから、指定されたオブジェクトのすべてのポイントをセグメントする視覚言語タスクである。
本稿では,LESSと呼ばれるレファレンス3次元パイプラインを提案する。
ScanReferデータセット上での最先端のパフォーマンスは、バイナリラベルのみを使用して、以前の3.7% mIoUの手法を上回ります。
論文 参考訳(メタデータ) (2024-10-17T07:47:41Z) - Learning Robust Named Entity Recognizers From Noisy Data With Retrieval Augmentation [67.89838237013078]
名前付きエンティティ認識(NER)モデルは、しばしばノイズの多い入力に悩まされる。
ノイズの多いテキストとそのNERラベルのみを利用できる、より現実的な設定を提案する。
我々は、推論中にテキストを取得することなく、堅牢なNERを改善するマルチビュートレーニングフレームワークを採用している。
論文 参考訳(メタデータ) (2024-07-26T07:30:41Z) - Matching of Descriptive Labels to Glossary Descriptions [4.030805205247758]
本稿では,既存の意味テキスト類似度測定(STS)を活用し,セマンティックラベルの強化と集合的文脈化を用いて拡張するフレームワークを提案する。
公開データソースから得られた2つのデータセットについて実験を行った。
論文 参考訳(メタデータ) (2023-10-27T07:09:04Z) - Multiview Identifiers Enhanced Generative Retrieval [78.38443356800848]
生成検索は、検索対象の通路の識別子文字列を生成する。
本稿では,パスの内容に基づいて生成される新しいタイプの識別子,合成識別子を提案する。
提案手法は生成的検索において最善を尽くし,その有効性とロバスト性を実証する。
論文 参考訳(メタデータ) (2023-05-26T06:50:21Z) - Searching for Discriminative Words in Multidimensional Continuous
Feature Space [0.0]
文書から識別キーワードを抽出する新しい手法を提案する。
異なる差別的指標が全体的な結果にどのように影響するかを示す。
単語特徴ベクトルは文書の意味のトピック的推論を大幅に改善することができると結論付けている。
論文 参考訳(メタデータ) (2022-11-26T18:05:11Z) - Text Summarization with Oracle Expectation [88.39032981994535]
抽出要約は、文書の中で最も重要な文を識別し、連結することによって要約を生成する。
ほとんどの要約データセットは、文書文が要約に値するかどうかを示す金のラベルを持っていない。
本稿では,ソフトな予測に基づく文ラベルを生成する,シンプルで効果的なラベル付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:10:08Z) - Knowledge Mining with Scene Text for Fine-Grained Recognition [53.74297368412834]
本研究では,シーンテキスト画像の背景にある暗黙的な文脈知識をマイニングする,エンドツーエンドのトレーニング可能なネットワークを提案する。
我々は,KnowBertを用いて意味表現の関連知識を検索し,それを画像特徴と組み合わせ,きめ細かい分類を行う。
本手法は,3.72%のmAPと5.39%のmAPをそれぞれ上回っている。
論文 参考訳(メタデータ) (2022-03-27T05:54:00Z) - Divide and Conquer: Text Semantic Matching with Disentangled Keywords
and Intents [19.035917264711664]
本稿では,キーワードを意図から切り離してテキストセマンティックマッチングを行うためのトレーニング戦略を提案する。
提案手法は,予測効率に影響を与えることなく,事前学習言語モデル(PLM)と容易に組み合わせることができる。
論文 参考訳(メタデータ) (2022-03-06T07:48:24Z) - Accelerating Text Mining Using Domain-Specific Stop Word Lists [57.76576681191192]
本稿では,超平面的アプローチと呼ばれるドメイン固有語の自動抽出手法を提案する。
ハイパープレーンベースのアプローチは、無関係な特徴を排除することによって、テキストの寸法を著しく削減することができる。
その結果,超平面型アプローチはコーパスの寸法を90%削減し,相互情報より優れることがわかった。
論文 参考訳(メタデータ) (2020-11-18T17:42:32Z) - MultiGBS: A multi-layer graph approach to biomedical summarization [6.11737116137921]
本稿では,文書を多層グラフとしてモデル化し,テキストの複数の特徴を同時に処理可能にするドメイン固有手法を提案する。
教師なしの手法では,MultiRankアルゴリズムと概念数に基づいて,多層グラフから文を選択する。
提案するMultiGBSアルゴリズムはUMLSを採用し,SemRepやMetaMap,OGERといったさまざまなツールを用いて概念と関係を抽出する。
論文 参考訳(メタデータ) (2020-08-27T04:22:37Z) - Research on Annotation Rules and Recognition Algorithm Based on Phrase
Window [4.334276223622026]
フレーズウィンドウに基づくラベリングルールを提案し,それに対応するフレーズ認識アルゴリズムを設計する。
ラベル付けルールでは、フレーズを最小単位とし、文を7種類のネスト可能なフレーズタイプに分割し、フレーズ間の文法的依存関係を示す。
対応するアルゴリズムは、画像中の対象領域を識別するアイデアに基づいて、文中の様々なフレーズの開始位置と終了位置を見つけることができる。
論文 参考訳(メタデータ) (2020-07-07T00:19:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。