Identifying and Mitigating Gender Bias in Hyperbolic Word Embeddings
- URL: http://arxiv.org/abs/2109.13767v1
- Date: Tue, 28 Sep 2021 14:43:37 GMT
- Title: Identifying and Mitigating Gender Bias in Hyperbolic Word Embeddings
- Authors: Vaibhav Kumar, Tenzin Singhay Bhotia, Vaibhav Kumar and Tanmoy
Chakraborty
- Abstract summary: We extend the study of gender bias to the recently popularized hyperbolic word embeddings.
We propose gyrocosine bias, a novel measure for quantifying gender bias in hyperbolic word representations.
Experiments on a suit of evaluation tests show that Poincar'e Gender Debias (PGD) effectively reduces bias while adding a minimal semantic offset.
- Score: 34.378806636170616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Euclidean word embedding models such as GloVe and Word2Vec have been shown to
reflect human-like gender biases. In this paper, we extend the study of gender
bias to the recently popularized hyperbolic word embeddings. We propose
gyrocosine bias, a novel measure for quantifying gender bias in hyperbolic word
representations and observe a significant presence of gender bias. To address
this problem, we propose Poincar\'e Gender Debias (PGD), a novel debiasing
procedure for hyperbolic word representations. Experiments on a suit of
evaluation tests show that PGD effectively reduces bias while adding a minimal
semantic offset.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
Recent studies show that traditional fairytales are rife with harmful gender biases.
This work aims to assess learned biases of language models by evaluating their robustness against gender perturbations.
arXiv Detail & Related papers (2023-10-16T22:25:09Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Model-Agnostic Gender Debiased Image Captioning [29.640940966944697]
Image captioning models are known to perpetuate and amplify harmful societal bias in the training set.
We propose a framework, called LIBRA, that learns from synthetically biased samples to decrease both types of biases.
arXiv Detail & Related papers (2023-04-07T15:30:49Z) - Stereotype and Skew: Quantifying Gender Bias in Pre-trained and
Fine-tuned Language Models [5.378664454650768]
This paper proposes two intuitive metrics, skew and stereotype, that quantify and analyse the gender bias present in contextual language models.
We find evidence that gender stereotype correlates approximately negatively with gender skew in out-of-the-box models, suggesting that there is a trade-off between these two forms of bias.
arXiv Detail & Related papers (2021-01-24T10:57:59Z) - MDR Cluster-Debias: A Nonlinear WordEmbedding Debiasing Pipeline [3.180013942295509]
Existing methods for debiasing word embeddings often do so only superficially, in that words that are stereotypically associated with a particular gender can still be clustered together in the debiased space.
This paper explores why this residual clustering exists, and how it might be addressed.
We identify two potential reasons for which residual bias exists and develop a new pipeline, MDR Cluster-Debias, to mitigate this bias.
arXiv Detail & Related papers (2020-06-20T20:03:07Z) - Nurse is Closer to Woman than Surgeon? Mitigating Gender-Biased
Proximities in Word Embeddings [37.65897382453336]
Existing post-processing methods for debiasing word embeddings are unable to mitigate gender bias hidden in the spatial arrangement of word vectors.
We propose RAN-Debias, a novel gender debiasing methodology which eliminates the bias present in a word vector but also alters the spatial distribution of its neighbouring vectors.
We also propose a new bias evaluation metric - Gender-based Illicit Proximity Estimate (GIPE)
arXiv Detail & Related papers (2020-06-02T20:50:43Z) - Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation [94.98656228690233]
We propose a technique that purifies the word embeddings against corpus regularities prior to inferring and removing the gender subspace.
Our approach preserves the distributional semantics of the pre-trained word embeddings while reducing gender bias to a significantly larger degree than prior approaches.
arXiv Detail & Related papers (2020-05-03T02:33:20Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.