Extensible Logging and Empirical Attainment Function for IOHexperimenter
- URL: http://arxiv.org/abs/2109.13773v2
- Date: Wed, 29 Sep 2021 12:45:32 GMT
- Title: Extensible Logging and Empirical Attainment Function for IOHexperimenter
- Authors: Johann Dreo and Manuel L\'opez-Ib\'a\~nez
- Abstract summary: IOHexperimenter provides a large set of synthetic problems, a logging system, and a fast implementation.
We implement a new logger, which aims at computing performance metrics of an algorithm across a benchmark.
We provide some common statistics on the Empirical Attainment Function and its discrete counterpart, the Empirical Attainment Histogram.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to allow for large-scale, landscape-aware, per-instance algorithm
selection, a benchmarking platform software is key. IOHexperimenter provides a
large set of synthetic problems, a logging system, and a fast implementation.
In this work, we refactor IOHexperimenter's logging system, in order to make it
more extensible and modular. Using this new system, we implement a new logger,
which aims at computing performance metrics of an algorithm across a benchmark.
The logger computes the most generic view on an anytime stochastic heuristic
performances, in the form of the Empirical Attainment Function (EAF). We also
provide some common statistics on the EAF and its discrete counterpart, the
Empirical Attainment Histogram. Our work has eventually been merged in the
IOHexperimenter codebase.
Related papers
- Is Function Similarity Over-Engineered? Building a Benchmark [37.33020176141435]
We build a new benchmark for binary function similarity detection consisting of high-quality datasets and tests that better reflect real-world use cases.
Our benchmark reveals that a new, simple basline, one which looks at only the raw bytes of a function, and requires no disassembly or other pre-processing, is able to achieve state-of-the-art performance in multiple settings.
arXiv Detail & Related papers (2024-10-30T03:59:46Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - A Unified Active Learning Framework for Annotating Graph Data with
Application to Software Source Code Performance Prediction [4.572330678291241]
We develop a unified active learning framework specializing in software performance prediction.
We investigate the impact of using different levels of information for active and passive learning.
Our approach aims to improve the investment in AI models for different software performance predictions.
arXiv Detail & Related papers (2023-04-06T14:00:48Z) - PDEBENCH: An Extensive Benchmark for Scientific Machine Learning [20.036987098901644]
We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs)
PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines.
arXiv Detail & Related papers (2022-10-13T17:03:36Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
Graph outlier detection is an emerging but crucial machine learning task with numerous applications.
We present the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD.
arXiv Detail & Related papers (2022-06-21T01:46:38Z) - IOHexperimenter: Benchmarking Platform for Iterative Optimization
Heuristics [3.6980928405935813]
IOHexperimenter aims at providing an easy-to-use and highly customizable toolbox for benchmarking iterative optimizations.
IOHexperimenter can be used as a stand-alone tool or as part of a benchmarking pipeline that uses other components of IOHprofiler such as IOHanalyzer.
arXiv Detail & Related papers (2021-11-07T13:11:37Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z) - IOHanalyzer: Detailed Performance Analyses for Iterative Optimization
Heuristics [3.967483941966979]
IOHanalyzer is a new user-friendly tool for the analysis, comparison, and visualization of performance data of IOHs.
IOHanalyzer provides detailed statistics about fixed-target running times and about fixed-budget performance of the benchmarked algorithms.
IOHanalyzer can directly process performance data from the main benchmarking platforms.
arXiv Detail & Related papers (2020-07-08T08:20:19Z) - Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits [99.59941892183454]
We propose Einsum Networks (EiNets), a novel implementation design for PCs.
At their core, EiNets combine a large number of arithmetic operations in a single monolithic einsum-operation.
We show that the implementation of Expectation-Maximization (EM) can be simplified for PCs, by leveraging automatic differentiation.
arXiv Detail & Related papers (2020-04-13T23:09:15Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.