論文の概要: Macroeconomic forecasting with LSTM and mixed frequency time series data
- arxiv url: http://arxiv.org/abs/2109.13777v1
- Date: Tue, 28 Sep 2021 14:56:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:51:27.854105
- Title: Macroeconomic forecasting with LSTM and mixed frequency time series data
- Title(参考訳): LSTMと混合周波数時系列データによるマクロ経済予測
- Authors: Sarun Kamolthip
- Abstract要約: まず,混合周波数で観測される時系列に従来型LSTMモデルを適用する方法について述べる。
次に、制約のない混合DAtaSamplingスキーム(U-MIDAS)をLSTMアーキテクチャに適用する。
提案手法は,短期予測の大規模景気後退期において非常に有効である可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper demonstrates the potentials of the long short-term memory (LSTM)
when applyingwith macroeconomic time series data sampled at different
frequencies. We first present how theconventional LSTM model can be adapted to
the time series observed at mixed frequencies when thesame mismatch ratio is
applied for all pairs of low-frequency output and higher-frequency variable.
Togeneralize the LSTM to the case of multiple mismatch ratios, we adopt the
unrestricted Mixed DAtaSampling (U-MIDAS) scheme (Foroni et al., 2015) into the
LSTM architecture. We assess via bothMonte Carlo simulations and empirical
application the out-of-sample predictive performance. Ourproposed models
outperform the restricted MIDAS model even in a set up favorable to the
MIDASestimator. For real world application, we study forecasting a quarterly
growth rate of Thai realGDP using a vast array of macroeconomic indicators both
quarterly and monthly. Our LSTM withU-MIDAS scheme easily beats the simple
benchmark AR(1) model at all horizons, but outperformsthe strong benchmark
univariate LSTM only at one and six months ahead. Nonetheless, we find thatour
proposed model could be very helpful in the period of large economic downturns
for short-termforecast. Simulation and empirical results seem to support the
use of our proposed LSTM withU-MIDAS scheme to nowcasting application.
- Abstract(参考訳): 本稿では、マクロ経済時系列データを異なる周波数でサンプリングする場合に、LSTM(Long Short-term memory)の可能性を示す。
まず,低周波出力と高周波変動の全てのペアに対して,アサマミスマッチ比を適用した場合には,混合周波数で観測される時系列に従来型LSTMモデルを適用する方法について述べる。
LSTMを多重ミスマッチ比に一般化するために、制約のない混合DATAS(U-MIDAS)スキームをLSTMアーキテクチャに適用する(Foroni et al., 2015)。
両Monte Carloシミュレーションと経験的応用によるアウトオブサンプル予測性能の評価を行った。
提案したモデルは,MIDASestimatorに有利な設定でも,制限されたMIDASモデルより優れている。
実世界の応用については,四半期および毎月のマクロ経済指標を用いて,タイの実質GDPの四半期成長率を予測する。
我々のLSTM with U-MIDAS方式は、すべての地平線における単純なベンチマークAR(1)モデルに容易に勝るが、強いベンチマークはLSTMを1~6ヶ月前にのみ一変させる。
しかし,短期予測の大規模な景気後退期には,提案モデルが非常に有効であることが示唆された。
シミュレーションと実験結果から,提案したLSTM with U-MIDAS スキームを応用できる可能性が示唆された。
関連論文リスト
- Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - On Continual Model Refinement in Out-of-Distribution Data Streams [64.62569873799096]
現実世界の自然言語処理(NLP)モデルは、アウト・オブ・ディストリビューション(OOD)データストリームの予測エラーを修正するために、継続的に更新する必要がある。
既存の継続学習(CL)問題設定は、そのような現実的で複雑なシナリオをカバーできない。
連続モデル改良(CMR)と呼ばれる新しいCL問題定式化を提案する。
論文 参考訳(メタデータ) (2022-05-04T11:54:44Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
スコアベース生成モデル(SGM)は,最近,サンプル品質と分布範囲の両面で顕著な結果を示した。
本稿では,Latent Score-based Generative Model (LSGM)を提案する。
データから潜在空間への移動により、より表現力のある生成モデルをトレーニングし、非連続データにSGMを適用し、よりスムーズなSGMをより小さな空間で学習することができる。
論文 参考訳(メタデータ) (2021-06-10T17:26:35Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z) - Prediction of financial time series using LSTM and data denoising
methods [0.29923891863939933]
本稿では,ウェーブレット変換 (WT) と特異スペクトル解析 (SSA) を含むデータデノイジング法に基づくアンサンブル法を提案する。
WTとSSAは、元のシーケンスから有用な情報を抽出し、オーバーフィッティングを避けるため、ハイブリッドモデルはDJIAの閉値のシーケンスパターンをよりよく把握することができる。
論文 参考訳(メタデータ) (2021-03-05T07:32:36Z) - Time Series Analysis and Forecasting of COVID-19 Cases Using LSTM and
ARIMA Models [4.56877715768796]
世界保健機関(WHO)が世界的な公衆衛生危機を宣言している。
本研究では,いくつかのLong Short-Term Memory(LSTM)モデルとAuto-Regressive Integrated Integrated Average(ARIMA)モデルを用いて,新型コロナウイルス感染者数の予測を行った。
論文 参考訳(メタデータ) (2020-06-05T20:07:48Z) - Long short-term memory networks and laglasso for bond yield forecasting:
Peeping inside the black box [10.412912723760172]
長期記憶(LSTM)ネットワークを用いた結合収率予測の最初の研究を行った。
我々は,シーケンス・ツー・シーケンス・アーキテクチャを用いて,メモリセル内の選択された位置におけるLSTM信号の時間的計算を行う。
論文 参考訳(メタデータ) (2020-05-05T14:23:00Z) - A Hybrid Residual Dilated LSTM end Exponential Smoothing Model for
Mid-Term Electric Load Forecasting [1.1602089225841632]
このモデルは指数的平滑化(ETS)、高度なLong Short-Term Memory(LSTM)とアンサンブルを組み合わせたものである。
欧州35か国における月次電力需要時系列のシミュレーション研究により,提案モデルの高性能性が確認された。
論文 参考訳(メタデータ) (2020-03-29T10:53:50Z) - High-Accuracy and Low-Latency Speech Recognition with Two-Head
Contextual Layer Trajectory LSTM Model [46.34788932277904]
我々は,高精度かつ低遅延自動音声認識のための従来のハイブリッドLSTM音響モデルの改良を行った。
高い精度を達成するために、時間的モデリングとターゲット分類タスクを分離する文脈層トラジェクトリLSTM(cltLSTM)を用いる。
シーケンスレベルの教師学生学習による学習戦略をさらに改善する。
論文 参考訳(メタデータ) (2020-03-17T00:52:11Z) - A Bayesian Long Short-Term Memory Model for Value at Risk and Expected
Shortfall Joint Forecasting [26.834110647177965]
バリュー・アット・リスク(VaR)と期待不足(ES)は、市場リスクを測定し、極端な市場の動きを管理するために金融セクターで広く利用されている。
量子化スコア関数と非対称ラプラス密度の最近の関係は、VaRとESのジョイントモデリングのためのフレキシブルな可能性に基づく枠組みにつながっている。
Asymmetric Laplace quasi-likelihoodをベースとしたハイブリッドモデルを開発し、機械学習のLong Short-Term Memory(LSTM)時系列モデリング技術を用いて、VaRとESの基盤となるダイナミクスを効率的に捉える。
論文 参考訳(メタデータ) (2020-01-23T05:13:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。