論文の概要: Single-dataset Experts for Multi-dataset Question Answering
- arxiv url: http://arxiv.org/abs/2109.13880v1
- Date: Tue, 28 Sep 2021 17:08:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:47:19.834988
- Title: Single-dataset Experts for Multi-dataset Question Answering
- Title(参考訳): マルチデータセット質問応答のためのsingle-dataset expert
- Authors: Dan Friedman, Ben Dodge, Danqi Chen
- Abstract要約: 複数のデータセットにネットワークをトレーニングして、新たなデータセットを一般化し、転送します。
我々のアプローチは、単一データセットの専門家の集合を用いて、マルチデータセットの質問応答をモデル化することである。
パラメータ警告に基づく単純な手法は、ゼロショットの一般化と少数ショットの転送性能の向上につながる。
- 参考スコア(独自算出の注目度): 6.092171111087768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many datasets have been created for training reading comprehension models,
and a natural question is whether we can combine them to build models that (1)
perform better on all of the training datasets and (2) generalize and transfer
better to new datasets. Prior work has addressed this goal by training one
network simultaneously on multiple datasets, which works well on average but is
prone to over- or under-fitting different sub-distributions and might transfer
worse compared to source models with more overlap with the target dataset. Our
approach is to model multi-dataset question answering with a collection of
single-dataset experts, by training a collection of lightweight,
dataset-specific adapter modules (Houlsby et al., 2019) that share an
underlying Transformer model. We find that these Multi-Adapter Dataset Experts
(MADE) outperform all our baselines in terms of in-distribution accuracy, and
simple methods based on parameter-averaging lead to better zero-shot
generalization and few-shot transfer performance, offering a strong and
versatile starting point for building new reading comprehension systems.
- Abstract(参考訳): 理解モデルを読むためのトレーニングのために多くのデータセットが作成されていますが、自然に疑問なのは、(1)すべてのトレーニングデータセットにおいて、より優れたモデルを構築し、(2)新しいデータセットに一般化し、転送できるかどうかです。
従来の作業では、複数のデータセット上で1つのネットワークを同時にトレーニングすることで、この目標に対処してきた。
我々のアプローチは、基盤となるTransformerモデルを共有する軽量なデータセット固有のアダプタモジュール(Houlsbyら、2019年)のコレクションをトレーニングすることで、シングルデータセットの専門家の集合でマルチデータセットの質問応答をモデル化することです。
これらのMADE(Multi-Adapter Dataset Experts)は、分布内精度の点で、全てのベースラインを上回り、パラメータ拡張に基づく単純な手法により、ゼロショットの一般化と少数ショットの転送性能が向上し、新しい読解システムを構築するための強力で汎用的な出発点を提供する。
関連論文リスト
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$は、Lifelong Instruction Tuningの新しいマルチウェイおよびアダプティブデータ選択アプローチである。
勾配に基づくサンプルベクトルをグループ化して擬似スキルクラスタを構築する。
セレクタエキスパートのプールから各スキルクラスタの最高のパフォーマンスデータセレクタを選択する。
論文 参考訳(メタデータ) (2024-10-14T15:48:09Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
ヘテロジニアスフィードバックを用いた大規模言語モデル(LLM)の微調整フレームワークを提案する。
まず、不均一なフィードバックデータをSFTやRLHFなどの手法と互換性のある単一の監視形式にまとめる。
次に、この統合されたフィードバックデータセットから、性能向上を得るために高品質で多様なサブセットを抽出する。
論文 参考訳(メタデータ) (2024-08-05T23:20:32Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
低リソース環境では、データ拡張に使用するシードデータサンプルの量は極めて少ない。
本稿では、他のデータセットから豊富なサンプルを組み込むことで、トレーニングデータを増強する新しい手法を提案する。
このアプローチは、生成されたデータが関連性だけでなく、限られたシードデータだけで達成できるものよりも多様であることを保証する。
論文 参考訳(メタデータ) (2024-02-21T02:45:46Z) - Combining datasets to increase the number of samples and improve model
fitting [7.4771091238795595]
我々はImp(ComImp)に基づくコンバインドデータセットと呼ばれる新しいフレームワークを提案する。
さらに,PCA,PCA-ComImpを用いたComImpの変種を提案する。
提案手法は,より小さなデータセット上での予測モデルの精度を大幅に向上させることで,転送学習と幾らか類似していることが示唆された。
論文 参考訳(メタデータ) (2022-10-11T06:06:37Z) - A Case for Dataset Specific Profiling [0.9023847175654603]
データ駆動科学は、科学的な発見が、リッチで規律固有のデータセットに対する計算AIモデルの実行に依存する、新興パラダイムである。
現代的な機械学習フレームワークを使用することで、誰でも科学的応用を可能にするデータに隠された概念を明らかにする計算モデルを開発し、実行することができる。
重要で広く使われているデータセットでは、データセットに対して実行できるすべての計算モデルのパフォーマンスを計算することは、クラウドリソースの点でコストを禁ずる。
論文 参考訳(メタデータ) (2022-08-01T18:38:05Z) - Parsing with Pretrained Language Models, Multiple Datasets, and Dataset
Embeddings [13.097523786733872]
変換器に基づく多言語依存にデータセットを埋め込む2つの手法を比較する。
ベースラインスコアが低い小さなデータセットやデータセットでは,パフォーマンスの向上が最も高いことを確認します。
すべてのデータセットの組み合わせによるトレーニングは、言語関連性に基づいてより小さなクラスタを設計するのと同様である。
論文 参考訳(メタデータ) (2021-12-07T10:47:07Z) - Transferability Metrics for Selecting Source Model Ensembles [43.980600479738435]
可能なすべてのアンサンブルを微調整することは、計算的に禁止されるため、アンサンブルの選択は困難である。
本稿では,このタスク用に設計された新しいトランスファービリティ指標を提案し,それらを挑戦的で現実的なトランスファー学習設定で評価する。
対象とするデータセットの平均は17で、ベースラインをそれぞれ6.4%、相対平均IoUは2.5%上回った。
論文 参考訳(メタデータ) (2021-11-25T10:43:29Z) - Multi-dataset Pretraining: A Unified Model for Semantic Segmentation [97.61605021985062]
我々は、異なるデータセットの断片化アノテーションを最大限に活用するために、マルチデータセット事前訓練と呼ばれる統合フレームワークを提案する。
これは、複数のデータセットに対して提案されたピクセルからプロトタイプへのコントラスト損失を通じてネットワークを事前トレーニングすることで実現される。
異なるデータセットからの画像とクラス間の関係をより良くモデル化するために、クロスデータセットの混合によりピクセルレベルの埋め込みを拡張する。
論文 参考訳(メタデータ) (2021-06-08T06:13:11Z) - XMixup: Efficient Transfer Learning with Auxiliary Samples by
Cross-domain Mixup [60.07531696857743]
クロスドメイン・ミックスアップ(XMixup)は、深層移動学習のためのマルチタスクパラダイムを改善する。
XMixupはソースデータセットから補助サンプルを選択し、単純なミックスアップ戦略を通じてトレーニングサンプルを拡張する。
実験の結果、XMixupは平均で1.9%精度が向上した。
論文 参考訳(メタデータ) (2020-07-20T16:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。