論文の概要: Gaussian Processes to speed up MCMC with automatic
exploratory-exploitation effect
- arxiv url: http://arxiv.org/abs/2109.13891v1
- Date: Tue, 28 Sep 2021 17:43:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 14:50:45.326408
- Title: Gaussian Processes to speed up MCMC with automatic
exploratory-exploitation effect
- Title(参考訳): 自動探索-探索効果によるMCMCの高速化のためのガウス過程
- Authors: Alessio Benavoli and Jason Wyse and Arthur White
- Abstract要約: 確率モデルをサンプリングするための2段階のメトロポリス・ハスティングスアルゴリズムを提案する。
このアプローチの主な特徴は、サンプリング中にターゲットの分布をスクラッチから学習する能力である。
- 参考スコア(独自算出の注目度): 1.0742675209112622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a two-stage Metropolis-Hastings algorithm for sampling
probabilistic models, whose log-likelihood is computationally expensive to
evaluate, by using a surrogate Gaussian Process (GP) model. The key feature of
the approach, and the difference w.r.t. previous works, is the ability to learn
the target distribution from scratch (while sampling), and so without the need
of pre-training the GP. This is fundamental for automatic and inference in
Probabilistic Programming Languages In particular, we present an alternative
first stage acceptance scheme by marginalising out the GP distributed function,
which makes the acceptance ratio explicitly dependent on the variance of the
GP. This approach is extended to Metropolis-Adjusted Langevin algorithm (MALA).
- Abstract(参考訳): 本研究では,疑似ガウス過程(gp)モデルを用いて,ログ類似度が計算的に高価である確率モデルサンプリングのための2段階メトロポリス・ハスティングスアルゴリズムを提案する。
アプローチの鍵となる特徴と、以前の研究との違いは、GPを事前訓練することなく(サンプリング中に)目標分布をスクラッチから学習する能力である。
これは確率型プログラミング言語における自動推論の基本であり、特に、GP分散関数を疎外することで、GPの分散に明示的に依存する第1段階の受け入れ方式を提案する。
このアプローチはMetropolis-Adjusted Langevin Algorithm (MALA)に拡張されている。
関連論文リスト
- Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework [35.79393879150088]
本稿では,制約満足度を高い確率で保証する頑健なGP-MPCの定式化を提案する。
提案手法は,既存手法とリアルタイム実現可能な時間に比較して,改良された到達可能集合近似を強調した。
論文 参考訳(メタデータ) (2024-09-13T08:15:20Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - B\'ezier Curve Gaussian Processes [8.11969931278838]
本稿では,確率的B'ezier曲線上に構築された新しい確率的シーケンスモデルを提案する。
混合密度ネットワークと組み合わせることで、平均場変動近似を必要とせずにベイズ条件推論を行うことができる。
このモデルは歩行者の軌跡予測に使われ、生成した予測はGP前でも機能する。
論文 参考訳(メタデータ) (2022-05-03T19:49:57Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
本稿では、時間差学習(TD)による政策評価の世代的視点について考察する。
OS-GPTDアプローチは、状態-逆ペアのシーケンスを観測することにより、与えられたポリシーの値関数を推定するために開発された。
1つの固定カーネルに関連する限られた表現性を緩和するために、GP前の重み付けアンサンブル(E)を用いて代替のスキームを生成する。
論文 参考訳(メタデータ) (2021-12-01T23:15:09Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Encoding spatiotemporal priors with VAEs for small-area estimation [2.4783465852664324]
本稿では,新しい時間的設定に対処する深層生成モデリング手法を提案する。
可変オートエンコーダ(VAE)の事前装着による事前サンプリングのクラスを近似する。
VAEは独立に分散された潜在ガウス空間表現のため、推論を驚くほど効率的にすることができる。
ベイズ型小面積推定タスクにおけるVAE2段階アプローチの有用性を実証する。
論文 参考訳(メタデータ) (2021-10-20T08:14:15Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
ガウス過程(GP)は、機械学習や統計学において強力なモデルを構築するために頻繁に用いられる。
本稿では,2重推定器による確率と大規模データセットの正確な推測と計算的ゲインを提供する擬似マージナル(PM)方式を提案する。
論文 参考訳(メタデータ) (2021-03-04T20:48:29Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - MAGMA: Inference and Prediction with Multi-Task Gaussian Processes [4.368185344922342]
タスク間で情報を共有するための共通平均プロセスを用いて,新しいマルチタスクガウスプロセス(GP)フレームワークを提案する。
私たちの全体的なアルゴリズムは textscMagma と呼ばれています(MeAn を用いた Multi tAsk Gaussian プロセスに対応しています)。
論文 参考訳(メタデータ) (2020-07-21T11:43:54Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。