Gaussian Processes to speed up MCMC with automatic
exploratory-exploitation effect
- URL: http://arxiv.org/abs/2109.13891v1
- Date: Tue, 28 Sep 2021 17:43:25 GMT
- Title: Gaussian Processes to speed up MCMC with automatic
exploratory-exploitation effect
- Authors: Alessio Benavoli and Jason Wyse and Arthur White
- Abstract summary: We present a two-stage Metropolis-Hastings algorithm for sampling probabilistic models.
The key feature of the approach is the ability to learn the target distribution from scratch while sampling.
- Score: 1.0742675209112622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a two-stage Metropolis-Hastings algorithm for sampling
probabilistic models, whose log-likelihood is computationally expensive to
evaluate, by using a surrogate Gaussian Process (GP) model. The key feature of
the approach, and the difference w.r.t. previous works, is the ability to learn
the target distribution from scratch (while sampling), and so without the need
of pre-training the GP. This is fundamental for automatic and inference in
Probabilistic Programming Languages In particular, we present an alternative
first stage acceptance scheme by marginalising out the GP distributed function,
which makes the acceptance ratio explicitly dependent on the variance of the
GP. This approach is extended to Metropolis-Adjusted Langevin algorithm (MALA).
Related papers
- Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework [35.79393879150088]
We propose a robust GP-MPC formulation that guarantees constraint satisfaction with high probability.
We highlight the improved reachable set approximation compared to existing methods, as well as real-time feasible times.
arXiv Detail & Related papers (2024-09-13T08:15:20Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - B\'ezier Curve Gaussian Processes [8.11969931278838]
This paper proposes a new probabilistic sequence model building on probabilistic B'ezier curves.
Combined with a Mixture Density network, Bayesian conditional inference can be performed without the need for mean field variational approximation.
The model is used for pedestrian trajectory prediction, where a generated prediction also serves as a GP prior.
arXiv Detail & Related papers (2022-05-03T19:49:57Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Encoding spatiotemporal priors with VAEs for small-area estimation [2.4783465852664324]
We propose a deep generative modelling approach to tackle a noveltemporal setting.
We approximate a class of prior samplings through prior fitting of a variational autoencoder (VAE)
VAE allows inference to become incredibly efficient due to independently distributed latent latent Gaussian space representation.
We demonstrate the utility of our VAE two stage approach on Bayesian, small-area estimation tasks.
arXiv Detail & Related papers (2021-10-20T08:14:15Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - MAGMA: Inference and Prediction with Multi-Task Gaussian Processes [4.368185344922342]
A novel multi-task Gaussian process (GP) framework is proposed, by using a common mean process for sharing information across tasks.
Our overall algorithm is called textscMagma (standing for Multi tAsk Gaussian processes with common MeAn)
arXiv Detail & Related papers (2020-07-21T11:43:54Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.