論文の概要: Marked Attribute Bias in Natural Language Inference
- arxiv url: http://arxiv.org/abs/2109.14039v1
- Date: Tue, 28 Sep 2021 20:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 02:50:46.506036
- Title: Marked Attribute Bias in Natural Language Inference
- Title(参考訳): 自然言語推論におけるマーク付き属性バイアス
- Authors: Hillary Dawkins
- Abstract要約: 下流NLPアプリケーションにおけるジェンダーバイアスの新しい観察: 自然言語推論における有意な属性バイアスについて述べる。
下流のアプリケーションのバイアスは、トレーニングデータ、単語の埋め込み、あるいは使用中のモデルによって増幅される。
ここでは, 単語埋め込みの内在的性質が, この顕著な属性効果にどのように寄与するかを理解する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reporting and providing test sets for harmful bias in NLP applications is
essential for building a robust understanding of the current problem. We
present a new observation of gender bias in a downstream NLP application:
marked attribute bias in natural language inference. Bias in downstream
applications can stem from training data, word embeddings, or be amplified by
the model in use. However, focusing on biased word embeddings is potentially
the most impactful first step due to their universal nature. Here we seek to
understand how the intrinsic properties of word embeddings contribute to this
observed marked attribute effect, and whether current post-processing methods
address the bias successfully. An investigation of the current debiasing
landscape reveals two open problems: none of the current debiased embeddings
mitigate the marked attribute error, and none of the intrinsic bias measures
are predictive of the marked attribute effect. By noticing that a new type of
intrinsic bias measure correlates meaningfully with the marked attribute
effect, we propose a new postprocessing debiasing scheme for static word
embeddings. The proposed method applied to existing embeddings achieves new
best results on the marked attribute bias test set. See
https://github.com/hillary-dawkins/MAB.
- Abstract(参考訳): NLPアプリケーションにおける有害バイアスに対するテストセットの報告と提供は、現在の問題に対する堅牢な理解を構築する上で不可欠である。
下流NLPアプリケーションにおけるジェンダーバイアスの新しい観察: 自然言語推論における有意な属性バイアスについて述べる。
下流アプリケーションにおけるバイアスは、トレーニングデータ、単語埋め込み、あるいは使用中のモデルによって増幅される。
しかし、バイアス付き単語の埋め込みに焦点を当てることは、その普遍性のために最も影響のある第一歩である可能性がある。
そこで本研究では, 単語埋め込みの本質的特性が, この顕著な属性効果にどのように寄与するか, および, 現在のポストプロセッシング手法がバイアスに対処するかどうかを考察する。
現行の脱バイアス環境の調査では、2つのオープンな問題が明らかになっている: 現行の脱バイアス埋め込みはいずれもマークされた特性誤差を緩和しておらず、本質的なバイアス測定はマークされた特性効果を予測できない。
そこで本研究では,新しい固有バイアス尺度が有意な属性効果と相関していることに気付き,静的単語埋め込みのための新しい後処理デバイアススキームを提案する。
既存の組込みに適用した提案手法は,marked attribute bias test setで新たな結果を得た。
https://github.com/hillary-dawkins/MABを参照。
関連論文リスト
- Mitigating Gender Bias in Contextual Word Embeddings [1.208453901299241]
本稿では,コンテキスト埋め込みにおける性別バイアスを大幅に軽減する,リップスティック(マスケ・ランゲージ・モデリング)の新たな目的関数を提案する。
また, 静的な埋め込みを嫌悪する新しい手法を提案し, 広範囲な解析と実験による実証実験を行った。
論文 参考訳(メタデータ) (2024-11-18T21:36:44Z) - Unlabeled Debiasing in Downstream Tasks via Class-wise Low Variance Regularization [13.773597081543185]
本稿では,組込みのクラスワイドな分散に基づく新しいデバイアス正規化手法を提案する。
提案手法は属性ラベルを必要とせず,属性をターゲットとせず,既存のデバイアス手法の欠点に対処する。
論文 参考訳(メタデータ) (2024-09-29T03:56:50Z) - Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair [36.221761997349795]
ディープニューラルネットワークは、データセットバイアスの存在下でターゲットクラスと急激な相関を持つバイアス特性に依存している。
本稿では,本質的特徴の領域を示す空間的指示を明示的に提示する手法を提案する。
実験により, 種々のバイアス重大度を有する合成および実世界のデータセットに対して, 最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2024-04-30T04:13:14Z) - Projective Methods for Mitigating Gender Bias in Pre-trained Language Models [10.418595661963062]
プロジェクティブメソッドは実装が高速で、少数の保存されたパラメータを使用し、既存のモデルパラメータを更新しない。
射影法は内在バイアスと下流バイアス軽減の両方に有効であるが, 両者の結果は必ずしも相関しない。
論文 参考訳(メタデータ) (2024-03-27T17:49:31Z) - Debiasing Sentence Embedders through Contrastive Word Pairs [46.9044612783003]
NLP解に対する線形および非線形バイアス情報を除去する手法を検討する。
従来のバイアス指標と非線形情報を考慮に入れたバイアス指標の共通偏り評価手法との比較を行った。
論文 参考訳(メタデータ) (2024-03-27T13:34:59Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
近年の研究では、事前学習言語モデル(PLM)が、事実知識抽出において「急激なバイアス」に悩まされていることが示されている。
本稿では,突発バイアスを徹底的に調査し緩和することにより,既存のベンチマークの信頼性を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-03-15T02:04:35Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z) - Looking at the Overlooked: An Analysis on the Word-Overlap Bias in
Natural Language Inference [20.112129592923246]
我々は、NLIモデルにおける重複バイアスの見過ごされた側面、すなわちリバースワードオーバーラップバイアスに焦点を当てる。
現在のNLIモデルは、重複の少ないインスタンスにおいて、非エンターメントラベルに対して非常に偏りがある。
重なり合うバイアスの出現とその緩和におけるマイノリティ事例の役割について検討する。
論文 参考訳(メタデータ) (2022-11-07T21:02:23Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - OSCaR: Orthogonal Subspace Correction and Rectification of Biases in
Word Embeddings [47.721931801603105]
我々は,概念全体を取り除く代わりに,概念間のバイアス付き関連を解消することに焦点を当てたバイアス緩和手法であるOSCaRを提案する。
性別バイアスに関する実験により、OSCaRは、セマンティック情報が埋め込みに保持され、バイアスも効果的に緩和されるようなバランスのとれたアプローチであることが示されている。
論文 参考訳(メタデータ) (2020-06-30T18:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。