論文の概要: VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text
Understanding
- arxiv url: http://arxiv.org/abs/2109.14084v1
- Date: Tue, 28 Sep 2021 23:01:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 15:03:00.784214
- Title: VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text
Understanding
- Title(参考訳): VideoCLIP: ゼロショットビデオテキスト理解のためのコントラスト事前トレーニング
- Authors: Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan,
Florian Metze Luke Zettlemoyer Christoph Feichtenhofer
- Abstract要約: 我々は、ゼロショットビデオとテキスト理解のための統一モデルを事前訓練するための対照的なアプローチであるVideoCLIPを提案する。
VideoCLIPは、ビデオとテキストの変換器を、近隣の検索から強陰性で時間的に重なり合うビデオテキストペアと対比することによって訓練する。
- 参考スコア(独自算出の注目度): 13.640902299569008
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present VideoCLIP, a contrastive approach to pre-train a unified model for
zero-shot video and text understanding, without using any labels on downstream
tasks. VideoCLIP trains a transformer for video and text by contrasting
temporally overlapping positive video-text pairs with hard negatives from
nearest neighbor retrieval. Our experiments on a diverse series of downstream
tasks, including sequence-level text-video retrieval, VideoQA, token-level
action localization, and action segmentation reveal state-of-the-art
performance, surpassing prior work, and in some cases even outperforming
supervised approaches. Code is made available at
https://github.com/pytorch/fairseq/examples/MMPT.
- Abstract(参考訳): videoclipは,ゼロショットビデオとテキスト理解のための統一モデルを,ダウンストリームタスクでラベルを使わずに事前学習する,対照的なアプローチである。
VideoCLIPは、ビデオとテキストの変換器を、近隣の検索から強陰性で時間的に重なり合うビデオテキストペアと対比することによって訓練する。
シーケンスレベルのテキストビデオ検索,ビデオqa,トークンレベルのアクションローカライズ,アクションセグメンテーションなど,ダウンストリームのさまざまなタスクに関する実験では,最先端のパフォーマンスが明らかにされ,事前の作業よりも優れており,場合によっては教師付きアプローチよりもパフォーマンスが優れている場合もあります。
コードはhttps://github.com/pytorch/fairseq/examples/mmptで入手できる。
関連論文リスト
- Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video
Generators [70.17041424896507]
最近のテキスト・ビデオ生成アプローチは、計算的に重いトレーニングに依存し、大規模なビデオデータセットを必要とする。
既存のテキスト・画像合成手法を用いたゼロショットテキスト・ビデオ生成の課題を提案する。
本手法は,ビデオデータ追加の訓練を受けていないにも関わらず,近年の手法よりも多種多種多種多種多種多種多種多種多種多様である。
論文 参考訳(メタデータ) (2023-03-23T17:01:59Z) - Weakly Supervised Video Representation Learning with Unaligned Text for
Sequential Videos [39.42509966219001]
本稿では,時間レベルのテキスト・ビデオの正確なアライメントが提供されないような逐次的ビデオ理解について検討する。
我々は、ビデオ表現のためのフレームレベルの特徴を集約するためにトランスフォーマーを使用し、事前訓練されたテキストエンコーダを使用して、各アクションとビデオ全体に対応するテキストをエンコードする。
ビデオシーケンス検証とテキスト・ツー・ビデオマッチングの実験により,本手法がベースラインをはるかに上回ることを示す。
論文 参考訳(メタデータ) (2023-03-22T08:13:25Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
本研究は、時間的・意味的な微粒なアライメントを可能にする、新しいテキスト-ビデオのローカライゼーション・プレテキストタスクを導入する。
具体的には、テキスト-ビデオのローカライゼーションは、テキスト記述が与えられたビデオの開始と終了の境界を予測するモーメント検索から成っている。
提案手法は,細粒度フレーム表現と単語表現を結合し,単一モードにおける異なるインスタンスの表現を暗黙的に区別する。
論文 参考訳(メタデータ) (2023-01-18T12:15:47Z) - HierVL: Learning Hierarchical Video-Language Embeddings [108.77600799637172]
HierVLは階層的なビデオ言語埋め込みであり、長期および短期の関連を同時に扱う。
クリップレベルとビデオレベルの両方でテキストと視覚のアライメントを促進する階層的なコントラストトレーニングの目標を導入する。
我々の階層的スキームは、SotAを達成した長期的なビデオ表現と同様に、その単一レベルよりも優れたクリップ表現をもたらす。
論文 参考訳(メタデータ) (2023-01-05T21:53:19Z) - Contrastive Video-Language Learning with Fine-grained Frame Sampling [54.542962813921214]
FineCoは、ビデオフレーム上で操作する微妙なコントラスト対象で、ビデオと言語表現をよりよく学習するアプローチである。
テキストと意味的に等価なフレームを選択することで、ビデオの削除を支援し、クロスモーダル対応を改善する。
論文 参考訳(メタデータ) (2022-10-10T22:48:08Z) - All in One: Exploring Unified Video-Language Pre-training [44.22059872694995]
そこで本研究では,生のビデオとテキストの信号を共同表現に組み込んだ,エンドツーエンドのビデオ言語モデルであるtextitall-in-one Transformerを提案する。
コードと事前訓練されたモデルはhttps://github.com/showlab/all-in-one.comでリリースされた。
論文 参考訳(メタデータ) (2022-03-14T17:06:30Z) - BridgeFormer: Bridging Video-text Retrieval with Multiple Choice
Questions [38.843518809230524]
我々は、Multiple Choice Questions (MCQ) と呼ばれる新しいプレテキストタスクを導入する。
BridgeFormerモジュールは、ビデオ機能に頼ってテキスト機能によって構築された"クエスト"に答えるように訓練されている。
質問や回答の形式では、ローカルなビデオテキストの特徴間の意味的関連を適切に確立することができる。
提案手法は,5つのデータセットにおいて,人気テキスト・ビデオ検索タスクにおける最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2022-01-13T09:33:54Z) - Align and Prompt: Video-and-Language Pre-training with Entity Prompts [111.23364631136339]
ビデオと言語による事前トレーニングは、様々なダウンストリームタスクに有望な改善を示している。
Align and Prompt: クロスモーダルアライメントを改良した,効率的かつ効果的なビデオ・言語事前学習フレームワークを提案する。
私たちのコードと事前訓練されたモデルはリリースされます。
論文 参考訳(メタデータ) (2021-12-17T15:55:53Z) - TACo: Token-aware Cascade Contrastive Learning for Video-Text Alignment [68.08689660963468]
Token-Aware Cascade contrastive Learning (TACo)と呼ばれる新しいアルゴリズムは、2つの新しい手法を用いてコントラスト学習を改善する。
そこで我々は,YouCook2,MSR-VTT,ActivityNetの3つの公開テキストビデオ検索ベンチマークに最先端を新たに設定した。
論文 参考訳(メタデータ) (2021-08-23T07:24:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。