論文の概要: Semi-Supervised Segmentation of Radiation-Induced Pulmonary Fibrosis
from Lung CT Scans with Multi-Scale Guided Dense Attention
- arxiv url: http://arxiv.org/abs/2109.14172v1
- Date: Wed, 29 Sep 2021 03:35:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 00:27:29.624377
- Title: Semi-Supervised Segmentation of Radiation-Induced Pulmonary Fibrosis
from Lung CT Scans with Multi-Scale Guided Dense Attention
- Title(参考訳): 肺CTにおける放射線誘発肺線維症の半監督的分画
- Authors: Guotai Wang, Shuwei Zhai, Giovanni Lasio, Baoshe Zhang, Byong Yi,
Shifeng Chen, Thomas J. Macvittie, Dimitris Metaxas, Jinghao Zhou, and
Shaoting Zhang
- Abstract要約: 我々はPF-Netと呼ばれる新しい畳み込みニューラルネットワークを提案する。
PF-Netは2Dと3Dの畳み込みを組み合わせ、大きなスライス間隔でCTボリュームを扱う。
放射線誘起PFによるRhesus MacaquesのCTスキャン実験により、PF-Netは既存の2D, 3D, 2.5Dニューラルネットワークよりも高いセグメンテーション精度を示した。
- 参考スコア(独自算出の注目度): 12.50972252041458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computed Tomography (CT) plays an important role in monitoring
radiation-induced Pulmonary Fibrosis (PF), where accurate segmentation of the
PF lesions is highly desired for diagnosis and treatment follow-up. However,
the task is challenged by ambiguous boundary, irregular shape, various position
and size of the lesions, as well as the difficulty in acquiring a large set of
annotated volumetric images for training. To overcome these problems, we
propose a novel convolutional neural network called PF-Net and incorporate it
into a semi-supervised learning framework based on Iterative Confidence-based
Refinement And Weighting of pseudo Labels (I-CRAWL). Our PF-Net combines 2D and
3D convolutions to deal with CT volumes with large inter-slice spacing, and
uses multi-scale guided dense attention to segment complex PF lesions. For
semi-supervised learning, our I-CRAWL employs pixel-level uncertainty-based
confidence-aware refinement to improve the accuracy of pseudo labels of
unannotated images, and uses image-level uncertainty for confidence-based image
weighting to suppress low-quality pseudo labels in an iterative training
process. Extensive experiments with CT scans of Rhesus Macaques with
radiation-induced PF showed that: 1) PF-Net achieved higher segmentation
accuracy than existing 2D, 3D and 2.5D neural networks, and 2) I-CRAWL
outperformed state-of-the-art semi-supervised learning methods for the PF
lesion segmentation task. Our method has a potential to improve the diagnosis
of PF and clinical assessment of side effects of radiotherapy for lung cancers.
- Abstract(参考訳): CTは放射線誘発肺線維症(PF)のモニタリングにおいて重要な役割を担っている。
しかし, この課題は, あいまいな境界, 不規則な形状, 病変の位置や大きさ, および大量の注釈付きボリューム画像を取得することの難しさによって解決される。
これらの問題を解決するために、PF-Netと呼ばれる新しい畳み込みニューラルネットワークを提案し、擬似ラベル(I-CRAWL)の反復信頼に基づくRefinement and Weightingに基づく半教師付き学習フレームワークに組み込む。
我々のPF-Netは2Dと3Dの畳み込みを組み合わせ、CTボリュームを大きなスライス間隔で扱う。
半教師あり学習において,I-CRAWLは画素レベルの不確実性を考慮した信頼度認識の改良を採用し,画像レベルの不確実性を利用して信頼度に基づく画像重み付けを行い,低品質な疑似ラベルを反復訓練プロセスで抑制する。
放射線誘発性PFによるRhesus MacaquesのCTスキャンによる広範囲な実験により、以下のことが判明した。
1)PF-Netは既存の2D、3D、2.5Dニューラルネットワークよりも高いセグメンテーション精度を実現し、
2) pf病変分節課題に対するi-crawl型半教師あり学習法
肺がんに対する放射線治療の副作用についてPFの診断と臨床評価を改善する可能性が示唆された。
関連論文リスト
- TSUBF-Net: Trans-Spatial UNet-like Network with Bi-direction Fusion for Segmentation of Adenoid Hypertrophy in CT [15.491823587869087]
アデノイド肥大は小児における閉塞型睡眠時無呼吸症候群の一般的な原因である。
3次元医用画像分割フレームワークであるTSUBF-Netを紹介する。
TSUBF-NetはHD95:7.03、IoU:85.63、DSC:92.26という最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-12-01T12:21:23Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
コーンビームCT(CBCT)は画像誘導放射線治療中に定期的に収集される。
近年, 深層学習に基づくCBCT強調法は, 人工物抑制に有望な成果を上げている。
本稿では,高画質CBCT画像から高画質CTライク画像へ変換する特徴指向ディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-01T10:09:01Z) - A Weakly Supervised Segmentation Network Embedding Cross-scale Attention
Guidance and Noise-sensitive Constraint for Detecting Tertiary Lymphoid
Structures of Pancreatic Tumors [19.775101438245272]
膵病理像における3次リンパ構造(TLS)の存在は膵腫瘍の予後を示す重要な指標である。
数発の学習でTLSを検出するために,弱い教師付きセグメンテーションネットワークを提案する。
得られた2つのデータセットに対する実験結果から,提案手法はTLSの検出精度において,最先端のセグメンテーションに基づくアルゴリズムよりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2023-07-27T03:25:09Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D
Convolution and Surface Point Regression [23.916776570010285]
コンピュータ支援型病変/重要なフィンディング検出技術は、医療画像の核心にある。
そこで本研究では,(1) P3DC演算子を組み込んだ深層アンカーフリーワンステージVULDフレームワークを提案する。
3次元病変の空間範囲を効果的に抑圧する新しいSPR法は、その代表的キーポイントを病変表面にピンポイントすることで実現される。
論文 参考訳(メタデータ) (2020-08-30T19:42:06Z) - Automatic Diagnosis of Pulmonary Embolism Using an Attention-guided
Framework: A Large-scale Study [5.4009326643013065]
肺塞栓症 (PE) は、高い死亡率と致死性を伴う致命的な疾患である。
胸部CTでPEを検出するための深層学習モデルについて, 2段階のトレーニング戦略を用いて検討した。
論文 参考訳(メタデータ) (2020-05-29T20:46:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。