Phonetic Word Embeddings
- URL: http://arxiv.org/abs/2109.14796v1
- Date: Thu, 30 Sep 2021 01:46:01 GMT
- Title: Phonetic Word Embeddings
- Authors: Rahul Sharma, Kunal Dhawan, Balakrishna Pailla
- Abstract summary: We present a novel methodology for calculating the phonetic similarity between words taking motivation from the human perception of sounds.
This metric is employed to learn a continuous vector embedding space that groups similar sounding words together.
The efficacy of the method is presented for two different languages (English, Hindi) and performance gains over previous reported works are discussed.
- Score: 1.2192936362342826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a novel methodology for calculating the phonetic
similarity between words taking motivation from the human perception of sounds.
This metric is employed to learn a continuous vector embedding space that
groups similar sounding words together and can be used for various downstream
computational phonology tasks. The efficacy of the method is presented for two
different languages (English, Hindi) and performance gains over previous
reported works are discussed on established tests for predicting phonetic
similarity. To address limited benchmarking mechanisms in this field, we also
introduce a heterographic pun dataset based evaluation methodology to compare
the effectiveness of acoustic similarity algorithms. Further, a visualization
of the embedding space is presented with a discussion on the various possible
use-cases of this novel algorithm. An open-source implementation is also shared
to aid reproducibility and enable adoption in related tasks.
Related papers
- Layer-Wise Analysis of Self-Supervised Acoustic Word Embeddings: A Study
on Speech Emotion Recognition [54.952250732643115]
We study Acoustic Word Embeddings (AWEs), a fixed-length feature derived from continuous representations, to explore their advantages in specific tasks.
AWEs have previously shown utility in capturing acoustic discriminability.
Our findings underscore the acoustic context conveyed by AWEs and showcase the highly competitive Speech Emotion Recognition accuracies.
arXiv Detail & Related papers (2024-02-04T21:24:54Z) - DenoSent: A Denoising Objective for Self-Supervised Sentence
Representation Learning [59.4644086610381]
We propose a novel denoising objective that inherits from another perspective, i.e., the intra-sentence perspective.
By introducing both discrete and continuous noise, we generate noisy sentences and then train our model to restore them to their original form.
Our empirical evaluations demonstrate that this approach delivers competitive results on both semantic textual similarity (STS) and a wide range of transfer tasks.
arXiv Detail & Related papers (2024-01-24T17:48:45Z) - Spoken Word2Vec: Learning Skipgram Embeddings from Speech [0.8901073744693314]
We show how shallow skipgram-like algorithms fail to encode distributional semantics when the input units are acoustically correlated.
We illustrate the potential of an alternative deep end-to-end variant of the model and examine the effects on the resulting embeddings.
arXiv Detail & Related papers (2023-11-15T19:25:29Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - Neural approaches to spoken content embedding [1.3706331473063877]
We contribute new discriminative acoustic word embedding (AWE) and acoustically grounded word embedding (AGWE) approaches based on recurrent neural networks (RNNs)
We apply our embedding models, both monolingual and multilingual, to the downstream tasks of query-by-example speech search and automatic speech recognition.
arXiv Detail & Related papers (2023-08-28T21:16:08Z) - A Comparative Study of Sentence Embedding Models for Assessing Semantic
Variation [0.0]
We compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature.
We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences.
arXiv Detail & Related papers (2023-08-08T23:31:10Z) - A Human Word Association based model for topic detection in social networks [1.8749305679160366]
This paper introduces a topic detection framework for social networks based on the concept of imitating the mental ability of word association.
The performance of this framework is evaluated using the FA-CUP dataset, a benchmark in the field of topic detection.
arXiv Detail & Related papers (2023-01-30T17:10:34Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Speaker Embedding-aware Neural Diarization for Flexible Number of
Speakers with Textual Information [55.75018546938499]
We propose the speaker embedding-aware neural diarization (SEND) method, which predicts the power set encoded labels.
Our method achieves lower diarization error rate than the target-speaker voice activity detection.
arXiv Detail & Related papers (2021-11-28T12:51:04Z) - Do Acoustic Word Embeddings Capture Phonological Similarity? An
Empirical Study [12.210797811981173]
In this paper, we ask: does the distance in the acoustic embedding space correlate with phonological dissimilarity?
We train AWE models in controlled settings for two languages (German and Czech) and evaluate the embeddings on two tasks: word discrimination and phonological similarity.
Our experiments show that (1) the distance in the embedding space in the best cases only moderately correlates with phonological distance, and (2) improving the performance on the word discrimination task does not necessarily yield models that better reflect word phonological similarity.
arXiv Detail & Related papers (2021-06-16T10:47:56Z) - Continuous speech separation: dataset and analysis [52.10378896407332]
In natural conversations, a speech signal is continuous, containing both overlapped and overlap-free components.
This paper describes a dataset and protocols for evaluating continuous speech separation algorithms.
arXiv Detail & Related papers (2020-01-30T18:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.