論文の概要: How Neural Processes Improve Graph Link Prediction
- arxiv url: http://arxiv.org/abs/2109.14894v1
- Date: Thu, 30 Sep 2021 07:35:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 15:03:09.655402
- Title: How Neural Processes Improve Graph Link Prediction
- Title(参考訳): ニューラルネットワークによるグラフリンク予測の改善
- Authors: Huidong Liang and Junbin Gao
- Abstract要約: リンク予測のためのグラフニューラルネットワークを用いたメタラーニング手法:グラフニューラルネットワークのためのニューラルプロセス(NPGNN)を提案する。
NPGNNは、トランスダクティブな学習タスクとインダクティブな学習タスクの両方を実行し、小さなサブグラフでトレーニングした後、大きな新しいグラフのパターンに適応することができる。
- 参考スコア(独自算出の注目度): 35.652234989200956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction is a fundamental problem in graph data analysis. While most
of the literature focuses on transductive link prediction that requires all the
graph nodes and majority of links in training, inductive link prediction, which
only uses a proportion of the nodes and their links in training, is a more
challenging problem in various real-world applications. In this paper, we
propose a meta-learning approach with graph neural networks for link
prediction: Neural Processes for Graph Neural Networks (NPGNN), which can
perform both transductive and inductive learning tasks and adapt to patterns in
a large new graph after training with a small subgraph. Experiments on
real-world graphs are conducted to validate our model, where the results
suggest that the proposed method achieves stronger performance compared to
other state-of-the-art models, and meanwhile generalizes well when training on
a small subgraph.
- Abstract(参考訳): リンク予測はグラフデータ解析における基本的な問題である。
文献の多くは、学習において全てのグラフノードと大多数のリンクを必要とするトランスダクティブリンク予測に焦点を当てているが、訓練においてノードの比率とリンクのみを使用するインダクティブリンク予測は、様々な現実のアプリケーションにおいてより難しい問題である。
本稿では,グラフニューラルネットワークを用いたメタラーニング手法を提案する: グラフニューラルネットワークのためのニューラルプロセス(NPGNN)。
実世界のグラフ実験により,提案手法が他の最先端モデルと比較して高い性能を達成し,一方,小さなサブグラフ上でのトレーニングではよく一般化することが示唆された。
関連論文リスト
- Link Prediction without Graph Neural Networks [7.436429318051601]
リンク予測は多くのグラフアプリケーションにおいて基本的なタスクである。
グラフニューラルネットワーク(GNN)がリンク予測の主要なフレームワークとなっている。
グラフ学習による属性情報によって強化されたグラフにトポロジ中心のフレームワークを適用する新しいフレームワークであるGelatoを提案する。
論文 参考訳(メタデータ) (2023-05-23T03:59:21Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
欠落したリンクを推測したり、観測されたグラフに基づいて急激なリンクを検出することは、グラフデータ分析における長年の課題である。
本稿では,GraphLPと呼ばれるネットワーク再構成理論に基づく,新しい,根本的に異なるリンク予測アルゴリズムを提案する。
リンク予測に使用される識別ニューラルネットワークモデルとは異なり、GraphLPは生成可能であり、ニューラルネットワークベースのリンク予測の新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2022-12-31T10:07:19Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Scalable Graph Neural Network Training: The Case for Sampling [4.9201378771958675]
グラフニューラルネットワーク(Graph Neural Networks、GNN)は、グラフ上で学習を行うディープニューラルネットワークアーキテクチャの新しい、ますます普及しているファミリです。
グラフデータの不規則性から、効率的にトレーニングすることは難しい。
文献には、全グラフとサンプルベースのトレーニングという2つの異なるアプローチが登場した。
論文 参考訳(メタデータ) (2021-05-05T20:44:10Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。