論文の概要: SUper Team at SemEval-2016 Task 3: Building a feature-rich system for
community question answering
- arxiv url: http://arxiv.org/abs/2109.15120v1
- Date: Sun, 26 Sep 2021 11:48:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 15:08:38.675975
- Title: SUper Team at SemEval-2016 Task 3: Building a feature-rich system for
community question answering
- Title(参考訳): SemEval-2016 Task 3: コミュニティ質問応答のための機能豊富なシステムの構築
- Authors: Tsvetomila Mihaylova, Pepa Gencheva, Martin Boyanov, Ivana Yovcheva,
Todor Mihaylov, Momchil Hardalov, Yasen Kiprov, Daniel Balchev, Ivan Koychev,
Preslav Nakov, Ivelina Nikolova, Galia Angelova
- Abstract要約: 本稿では,SemEval-2016 Task 3 に参加するために構築したコミュニティ質問回答システムについて紹介する。
サブタスクC, サブタスクA, Bにおいて, 最高の結果を得た。
最も重要なグループは、質問とコメントのためのメタデータであることが判明した。
- 参考スコア(独自算出の注目度): 16.960648270377316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the system we built for participating in SemEval-2016 Task 3 on
Community Question Answering. We achieved the best results on subtask C, and
strong results on subtasks A and B, by combining a rich set of various types of
features: semantic, lexical, metadata, and user-related. The most important
group turned out to be the metadata for the question and for the comment,
semantic vectors trained on QatarLiving data and similarities between the
question and the comment for subtasks A and C, and between the original and the
related question for Subtask B.
- Abstract(参考訳): 本稿では,SemEval-2016 Task 3 に参加するためのコミュニティ質問回答システムについて紹介する。
サブタスクC, およびサブタスクA, Bにおいて, セマンティック, 語彙, メタデータ, ユーザ関連といった多種多様な機能の組み合わせにより, 最高の結果を得た。
最も重要なグループは、質問のメタデータであり、コメントのために、QatarLivingデータに基づいて訓練されたセマンティックベクターとサブタスクAとCのコメントの類似性、およびSubtask Bのオリジナルと関連する質問の類似性が判明した。
関連論文リスト
- Feature Engineering in Learning-to-Rank for Community Question Answering
Task [2.5091819952713057]
コミュニティ質問応答(CQA)フォーラムはインターネットベースのプラットフォームで、ユーザーはトピックについて質問し、他の専門家はソリューションを提供しようとする。
Quora、Stackoverflow、Yahoo!Answer、StackExchangeといった多くのCQAフォーラムには、多くのユーザ生成データが存在する。
これらのデータは、ユーザの問い合わせに応じて類似の質問(と回答)が提示される自動CQAランキングシステムで活用される。
論文 参考訳(メタデータ) (2023-09-14T11:18:26Z) - QUADRo: Dataset and Models for QUestion-Answer Database Retrieval [97.84448420852854]
質問/回答(q/a)ペアのデータベース(DB)が与えられた場合、同じ質問に対してDBをスキャンすることで、対象の質問に答えることができる。
我々は6.3Mのq/aペアからなる大規模DBを構築し、公開質問を用いて、ニューラルIRとq/aペアリランカに基づく新しいシステムを設計する。
我々は、Bing検索エンジン上に構築されたQAシステムという、Webベースの手法とDBベースのアプローチが競合することを示す。
論文 参考訳(メタデータ) (2023-03-30T00:42:07Z) - Multimodal Inverse Cloze Task for Knowledge-based Visual Question
Answering [4.114444605090133]
名前付きエンティティに関する知識に基づく視覚質問応答のための事前学習手法であるMultimodal Inverse Cloze Taskを提案する。
KVQAEは最近導入されたタスクで、知識ベースを使用して視覚的コンテキストに接地された名前付きエンティティに関する質問に答える。
提案手法は異なるニューラルネットワークアーキテクチャに適用可能であり, 9%の相対MRR, 15%の相対F1ゲインが検索および読解に有効である。
論文 参考訳(メタデータ) (2023-01-11T09:16:34Z) - Summarizing Community-based Question-Answer Pairs [5.680726650578754]
本稿では,CQAペアから簡潔な要約を作成することを目的とした,新しいCQA要約タスクを提案する。
私たちのデータとコードは公開されています。
論文 参考訳(メタデータ) (2022-11-17T21:09:41Z) - HeteroQA: Learning towards Question-and-Answering through Multiple
Information Sources via Heterogeneous Graph Modeling [50.39787601462344]
コミュニティ質問回答(Community Question Answering, CQA)は、Eコマースやオンラインユーザコミュニティなど、多くのシナリオで利用することができる、明確に定義されたタスクである。
CQAの手法のほとんどは、知識を抽出し、ユーザの質問に答えるために記事やウィキペディアしか含まない。
ユーザコミュニティに複数の情報ソース(MIS)を組み込んで回答を自動的に生成する問合せ対応の異種グラフ変換器を提案する。
論文 参考訳(メタデータ) (2021-12-27T10:16:43Z) - AnswerSumm: A Manually-Curated Dataset and Pipeline for Answer
Summarization [73.91543616777064]
Stack OverflowやYahoo!のようなコミュニティ質問回答(CQA)フォーラムには、幅広いコミュニティベースの質問に対する回答の豊富なリソースが含まれている。
回答の要約の1つのゴールは、回答の視点の範囲を反映した要約を作成することである。
本研究は,専門言語学者による解答要約のための4,631個のCQAスレッドからなる新しいデータセットを導入する。
論文 参考訳(メタデータ) (2021-11-11T21:48:02Z) - QAConv: Question Answering on Informative Conversations [85.2923607672282]
ビジネスメールやパネルディスカッション,作業チャネルなど,情報的な会話に重点を置いています。
合計で、スパンベース、フリーフォーム、および回答不能な質問を含む34,204のQAペアを収集します。
論文 参考訳(メタデータ) (2021-05-14T15:53:05Z) - Diverse and Non-redundant Answer Set Extraction on Community QA based on
DPPs [18.013010857062643]
コミュニティベースの質問応答プラットフォームでは、ユーザが多くの回答の中から有用な情報を得るのに時間がかかる。
本稿では,回答のランク付けよりも多様で非冗長な回答セットを選択することを提案する。
論文 参考訳(メタデータ) (2020-11-18T07:33:03Z) - SemEval-2020 Task 4: Commonsense Validation and Explanation [24.389998904122244]
SemEval-2020 Task 4, Commonsense Validation and Explanation (ComVE)には3つのサブタスクが含まれている。
我々は,人間にとって理にかなう自然言語文と,そうでないものとを区別できるかどうかを評価することを目的とする。
Subtask A と Subtask B では、上位のシステムのパフォーマンスは人間に近い。
論文 参考訳(メタデータ) (2020-07-01T04:41:05Z) - Match$^2$: A Matching over Matching Model for Similar Question
Identification [74.7142127303489]
コミュニティ質問回答(Community Question Answering, CQA)は,質問や回答の提出を自由に行う,知識獲得のための主要な手段となっている。
類似した質問識別は、CQAの中核的なタスクとなり、新しい質問が尋ねられるたびに、アーカイブされたリポジトリから同様の質問を見つけることを目的としている。
自然言語の固有のバリエーション、すなわち、同じ質問をしたり、同じ表現を共有する異なる質問をする方法があるため、この2つの質問の類似性を適切に測定することは、長い間困難であった。
従来の手法では片側の使用が一般的であり、答えを拡張された表現として活用する。
論文 参考訳(メタデータ) (2020-06-21T05:59:34Z) - Unsupervised Question Decomposition for Question Answering [102.56966847404287]
本論文では, ワンツーNアン教師付きシーケンスシーケンス(ONUS)のアルゴリズムを提案する。
当初,ドメイン外,マルチホップ開発セットのベースラインが強かったため,HotpotQAでは大きなQA改善が見られた。
論文 参考訳(メタデータ) (2020-02-22T19:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。